Top quarks and tau leptons

Oleksii Toldaiev supervised by Michele Galinaro and Joao Varela

LIP, CMS

15 February 2020

Top quark pair production in lepton+tau final state

Motivation:

- a measurement in $t\bar{t} \rightarrow b\bar{b}l\tau$ channel at 13TeV
- improved systematic uncertainties
- a spin-off measurement with the ratio to dilepton channel

This work comprises my PhD thesis, to be submitted at the end of March.

Features of $t\overline{t} \rightarrow b\overline{b}\ell au u_{\ell} u_{\tau}$ channel, measurement method

Many particular final products:

- 2 b-jets (displaced vertex of jet)
- 1 lepton (muon or electron)
- 2 neutrinos
- 1 hadronicaly decaying tau lepton
- select events with ID algorithms for all the final state objects
- the main background is from the misidentified $\tau_{\rm h}$ in $t\overline{t} \rightarrow b\overline{b}\ell\nu_\ell q\overline{q}$

The background of misidentified $\tau_{\rm h}$

- ullet distinguish misidentified $\tau_{\rm h}$ per the physical process of origin
- use tau-independent parameters:
 - $\bullet\,$ the $m_{\rm W}$ and $m_{\rm t}$ constraint in the kinematics of jets
 - the shape of $m_{\rm T}(\vec{p}^\ell, \vec{p}_{\rm T}^{miss}) = \sqrt{2|\vec{p}_{\rm T}^\ell||\vec{p}_{\rm T}^{miss}|(1 \cos\Delta\varphi)}$ distribution
- both methods constrain the background and cross-check each other

then:

- template distributions from the simulation and a data-driven estimation of QCD
- a Profile Likelihood Ratio fit is performed to the binned distributions

Results

- measured values: the production cross section and the partial width of the $t \rightarrow b \tau \nu_{\tau}$ decay
- first measurement in this channel @13TeV
- improved precision over Run1 and other measurements $(10\% \rightarrow 7\%)$
- the remaining uncertainty is mainly due to $\tau_{\rm h}$ ID a further improvement requires a different analysis strategy, with different goals (next slides)
- the paper has been accepted by JHEP (1911.13204)

ATLAS+CMS Preliminary LHC/opWG	σ _{st} summary, f s = 13 TeV Sept 2019						
$\begin{array}{cccc} & \text{NNLO+NNLL} \ \mbox{PRL} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	total stat $\sigma_{if} \pm (stat) \pm (syst) \pm (humi)$						
ATLAS, dilepton eµ * ATLAS-CONF-2019-041, L _{at} = 36.1 fb ⁻¹	826 ± 4 ± 12 ± 16 pb						
ATLAS, I+jets * ATLAS-CONF-2019-044, L _{at} = 139 fb ⁻¹	830 ± 0.4 ± 32 ± 15 pb						
CMS, dilepton eµ PRL 116 (2016) 052002, L _{ad} = 43 pb ⁻¹ , 50 m	H 746 ± 58 ± 53 ± 36 pb						
CMS, dilepton eµ EPJC 79 (2019) 368, L ₁₀ = 35.9 fb ⁻¹ , 25 ns	₩ 803 ± 2 ± 25 ± 20 pb						
CMS, dilepton t+e/µ *	₩ 1 781± 7±62±20 pb						
CMS, I+jets JHEP 09 (2017) 051, L = 2.2 fb ⁻¹ , 25 m	888 ± 2 ± 26 ± 20 pb						
CMS, all-jets *	834 ± 25 ± 118 ± 23 pb						
	NNPDF3.0 JHEP 04 (2015) 040						
1 Destadores	MMHT14 EPUC 75 (2015) 5						
	CT14 PRD 93 (2016) 033006						
	ABM12 PRD 89 (2015) 054028 [s. (m.) = 0.113]						
200 400 600 800 1000 1200 1400							
σ., [pb]							
$\sigma_{t\bar{t}}(\ell\tau) = 781 \pm 7 \pm 62 \pm 20$ pb							

Lepton universality in W decays, motivation

$\Gamma(\tau^+ u)/\Gamma(e^+ u)$					Γ ₄ /Γ ₂	$W \rightarrow e \nu$	(10.75 ± 0.13) %
VALUE 1.043±0.024 OUR AVE	<u>EVTS</u> RAGE	DOCUMENT ID		TECN	COMMENT	$W \rightarrow \mu \nu$	(10.57 ± 0.15) %
$1.063 \!\pm\! 0.027$		SCHAEL	13A	LEP	E ^{ee} _{cm} = 130-209 GeV	$W \rightarrow \tau v$	$(11.25 \pm 0.20)\%$
$0.961 \!\pm\! 0.061$	980	¹ ABBOTT	00 D	D0	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV		().1
0.94 ± 0.14	179	² ABE	92E	CDF	$E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV		
$1.04 \ \pm 0.08 \ \pm 0.08$	754	³ ALITTI	92F	UA2	$E_{\rm cm}^{p\overline{p}}$ = 630 GeV		
$1.02\ \pm 0.20\ \pm 0.12$	32	ALBAJAR	89	UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV		

- excess of about 2.5σ in current measurements:
 - performed at LEP in virtual WW channel (not enough energy)
 - relative uncertainty $\approx 2\%$
- similar excess in B physics, in processes with $b \to c \ell^- \overline{\nu}_\ell$ transition
- at LHC:
 - enough energy for on-shell dibosons and $t\bar{t}$
 - current similar measurements lack precision (about 6-10%)
 - with the amount of luminosity we can use a tight selection
- 1910.11783 estimation from ATLAS' S. Dysch and T. R. Wyatt

A feasibility study for lepton universality

•
$$\frac{\mathcal{B}(W \to \tau)}{\mathcal{B}(W \to \mu)}$$
 in $t\overline{t}$ final states:
 $\frac{\sigma(\mu\tau_h)}{\sigma(\mu\mu)} = \frac{\mathcal{B}(W \to \tau \to \tau_h)}{\mathcal{B}(W \to \mu) + \mathcal{B}(W \to \tau \to \mu)} = \frac{\frac{\mathcal{B}(W \to \tau)}{\mathcal{B}(W \to \mu)}\mathcal{B}(\tau \to \tau_h)}{1 + \frac{\mathcal{B}(W \to \tau)}{\mathcal{B}(W \to \mu)}\mathcal{B}(\tau \to \mu)}$

- constrain τ_h ID uncertainty in a double ratio with DY: $\frac{t\bar{t} \rightarrow \ell \tau_h}{t\bar{t} \rightarrow \ell \ell} \frac{DY \rightarrow \ell \ell}{DY \rightarrow \tau_\ell \tau_h}$
- make a tight cut on τ_h ID to select a clean DY and $t\overline{t}$ samples
- current study shows about 3% overall uncertainty in full Run2 dataset with only 1 flavour of leptons
- but it is statistically bound
- a number of optimizations to enhance statistics are being studied

Questions