Search for anomalous tZq coupling with the ATLAS experiment

Universidade do Minho Escola de Ciências

Nuno Castro, Ana Peixoto Jornadas Científicas do LIP - Braga, Portugal 14 to 16 of Fobruary of 2020

14 to 16 of February of 2020

Motivation

- A Flavour Changing Neutral Current (FCNC) process is an interaction with a **change of the** fermion flavour through the emission of a neutral boson
- According to the Standard Model, FCNC processes are **forbidden at tree level** and **highly** suppressed at higher orders
- Nonetheless, FCNC processes can be significantly **enhanced in new physics models**

An evidence of a FCNC signal can directly indicate the existence of new physics

Analysis Strategy

A search for FCNC processes sensitive the tZq coupling is performed using 140 fb⁻¹ of data collected by the ATLAS detector in full Run 2 period.

The analysis combines both **production and decay** modes in collaboration with **teams** from Tbilisi and Roma:

- In production: single-top production ⇒ Particularly sensitive to tZu coupling
- In decay: ttbar decay ($t \rightarrow q Z$, q=u,c) and focused ttbar decay ($t \rightarrow c Z$) with Soft Muon Tagging used as charm-quark tagger \Rightarrow Higher statistics

Searches for FCNC interactions in the top quark sector have already been performed at LEP, HERA, Tevatron and LHC obtaining expected and observed upper limits at 95% confidence level (left)

- Top quark decays via FCNC processes possible in two modes (X = H, Z, g, γ):
 - In **production**: **t+X** (top right)
 - In **decay**: **ttbar** ($t \rightarrow qX$) with q = u, c (bottom right)
- Estimate of the **interference effects** studied due to the possibility of the **same final state for** production and decay modes (arXiv:1909.08443)
 - **Phenomenological study** for tZq and tyq anomalous couplings at parton and detector level was performed with Monte Carlo generation at a centre-of-mass energy of 13 TeV
 - Difference on the transverse momentum distributions covered by **variations of the scales** in the leading-order samples

- For both modes, the signal selection targets:
- **Trileptonic** topology: I⁺ I⁻ + I + b-jets + E^{Miss}
- **tZu** and **tZc** anomalous couplings
- Main backgrounds: ttbar, ttbar+X, Z+jets and diboson (WZ and ZZ) processes

Reconstruction of top quark using the same method for both production and decay signal regions where different variables are considered:

• For FCNC tZ production events with the χ^2 method by minimizing the neutrino p_2 :

• For FCNC ttbar decay events, the χ^2 is minimized with the neutrino p_{τ} and jets combination:

Therefore, the **final state of the signal** processes is characterised by:

- Exactly **three** isolated **leptons**
- At least one jet with only one being tagged as a jet coming from a bottom quark (with a *b*-tagging efficiency of 77%)
- Transverse mass of the W boson greater than 40 GeV
- At least one **Z** boson candidate (pair of e^+e^- or $\mu^+\mu^-$) with $|m_{\mu} 91.18| < 15$ GeV

Monte Carlo modeling of background processes is investigated using data control regions for the main backgrounds (as diboson, ttbar and Z+jets) where the signal contribution is low and the data and simulation agreement can be analyzed:

 \sim

≥ 2 == 1 Number of b-iets

Modeling

- For the decay signal regions, the distributions of the reconstructed masses and transverse momentum of the SM and FCNC top quark as well as **angular variables** as DeltaR between Z boson and a light quark (left)
- Kinematic variables as transverse momentum of the Z boson and the transverse mass of the W boson with softer distributions compared with the signal for the production case (right)

Signal from background discrimination

Boosted Decision Trees with Gradient boosting (BDTG) method within the TMVA multivariate analysis tool used to discriminate signal from background

- Promising preliminary results for the production case using the following variables:
 - SM top quark candidate mass Ο
- Z boson candidate transverse momentum
- \circ ΔR between Z boson candidates and SM top quark candidates
- Bottom quark candidate transverse momentum

ttbar+W Cross Section

ttbar+II Cross Section PILEUP MU TRIGGER SYS MU TRIGGER STA

MU SCL MU RESBIAS

MU MS

MU ISOL SYS

MU ISOL STA

MET RES PERI

MET RES PARA

JET_GROUPEDNP3 JET_GROUPEDNP2

JET_GROUPEDNP1 JET FLARESP

BTAG 77 XTR CHRM BTAG 77 XTR BTAG 77 EIGENV L BTAG 77 EIGENV L BTAG 77 EIGENV L BTAG 77 EIGENV L

BTAG 77 EIGENV B

-1 0 $(\hat{\theta} - \theta_0) / \Delta \theta$ EG SCALE

EG RES

JET ETACLOSURE POSET. JET ETACLOSURE NEGET/ JET ETACLOSURE 2018DAT

MU ID SYST

A likelihood fit for a signal strength μ is performed with sources of systematic uncertainty (as luminosity, pileup reweighting, statistics, Background model) included as nuisance parameters • **Normalization uncertainty** for main backgrounds as ttbar, diboson and tZj processes

- Requirement of only non b-tagged jets allows an excellent purity of diboson processes as WZ and ZZ and presents a good data and Monte Carlo simulation agreement for the diboson control region (top left)
- Considering only events with exactly two *b*-tagged jets enable a reasonable **isolation** of **ttbar** and ttbar+X processes for the ttbar control regions (top right)
 - ATLAS Work in Progress ATLAS Work in Progress 100-13 TeV, 139.0 fb⁻¹ 2500-13 TeV, 139.0 fb⁻¹ FCNC utZ Production FCNC ctZ Productio FCNC utZ Decay FCNC ctZ Decay 1500 1000 500 ****<u>*</u>*** 80 100 120 140 160 180 200 W boson transverse mass M_r(W) [GeV]
- **Experimental limits** on the branching ratios of $t \rightarrow q Z$ with q=u,c are being prepared obtained using the **BDTG score** in the signal regions

-9.3 -31.5 37.8 -20.9 -11.7 -11.0 21.3 -1.2 9.3 1.8 9.3 9.9

Ana Peixoto supported by Fundação para a Ciência e Tecnologia (FCT) through the project CERN/FIS-PAR/0002/2019, FCT grant SFRH/BD/129321/2017 and ATLAS PhD Grant 2018.