

Sensitivity to HWW anomalous couplings at ATLAS

<u>Ricardo Barrué</u>¹[†], Patrícia Muíño², Ricardo Gonçalo³, Rui Santos⁴ ¹ LIP, IST; ² LIP, IST; ³ LIP, UC; ⁴ CFTC, ISEL; † ricardo.barrue@tecnico.ulisboa.pt

Motivation

- Higgs boson discovered in 2012, needs to be scrutinized
- \rightarrow can be a window for BSM physics
- CP-odd Higgs couplings not predicted in the SM \rightarrow modify shapes of distributions
- CP-odd couplings entail CP violation, required to explain observed baryonic asymmetry

Analysis

signals

Reconstrution-level comparison

• detector simulation, event reconstruction and full event selection applied • comparing **shape-only** (unit area)

Theoretical framework: extended HWW vertex

Effective Field Theory techniques

- **model-independent** approach to parametrize deviations to the SM
- \rightarrow add higher dimensional operators to \mathcal{L}_{SM}
- * combinations of SM operators
- \rightarrow valid for energy scales **below the lowest new physics scale**, \land

$$i\Gamma^{\mu\nu}_{HWW}(k_1, k_2) = i(g_2 m_W) \left[\eta^{\mu\nu} \left(1 + a_W - \frac{b_{W1}}{m_W^2} (k_1 \cdot k_2) + \frac{b_{W2}}{m_W^2} (k_1^2 + k_2^2) \right) \right]$$

$$+ \frac{b_{W1}}{m_W^2} k_1^{\nu} k_2^{\mu} - \frac{b_{W2}}{m_W^2} \left(k_1^{\mu} k_1^{\nu} + k_2^{\mu} k_2^{\nu}\right) + \frac{c_W}{m_W^2} \epsilon^{\mu\nu\rho\sigma} k_{1_{\rho}} k_{2_{\sigma}}\right]$$

- k_1, k_2 : gauge boson momenta
- a_W : additional CP-even SM contribution ($a_W = 0 \Leftrightarrow SM$)

- 0.04
- SM and signal skewed to lower values w.r.t BSM
 - backgrounds symmetric for SM signal and backgrounds
 - asymmetric for SM+CP-odd coupling

Contributions to ATLAS analysis

 boosted Higgs tagging strategy studies • event selection optimization

Data-MC comparison in top control region

• b_{W1} , b_{W2} : **CP-even** BSM couplings • C_W: **CP-odd** BSM coupling

Boosted *WH* **production**

BSM couplings push p_T distributions to higher values • increased sensitivity at higher energies

 $\cos \theta^*$ (left) and $\cos \delta^+$ (right) in the $t\bar{t}$ control region for 250 GeV $< p_{T_W} < 400$ GeV

• well modelled for backgrounds

Conclusions

Angular observables such as $\cos \theta^*$ and $\cos \delta^+$ are sensitive to the CP-odd coupling and should be implemented in future work

Next steps:

- implement in next iteration of ATLAS analysis
- study methods to extract value of CP-odd coupling

Angular observables

Higher dimensional operators **modify spin correlations** • differences in angular observables, such as

• $\mathbf{p}_{L}^{(W)} = 3$ -momentum of charged lepton in W rest frame

 \rightarrow calculation of asymmetry \rightarrow multivariable method

Acknowledgements

CERN/FIS-PAR/0002/2019