

AMS a cosmic ray experiment in the ISS

eight years operating in space near earth

FCT Fundação para a Ciência e a Tecnologia <u>Fernando Barao</u> LIP, Instituto Superior Técnico

Research project: CERN/FIS-PAR/0013/2019

Jornadas LIP 2020 (Braga)

Galaxy view with $\gamma > 100$ MeV

Launched on June 11, 2008, the Fermi Gamma-ray Space Telescope.

 γ radiation is a tracer of high energy protons (and nuclei) and interstellar matter in the Galaxy

Jornadas LIP 2020 (Braga)

SNR: proton accelerators...

A direct signature of high-energy protons is provided by gamma rays generated in the decay of neutral pions

CRs: from sources to observation...

cosmic-rays are accelerated to a power-law spectrum in local sources, Q(E) and diffuse within the galaxy (magnetic field environment) diffusion coefficient: *D*

CRs: transport equation

let's evaluate the variation in time of the density of particles, *N* in an energy-space cell

$$\frac{\partial N}{\partial t} = -\frac{\partial \varphi}{\partial x} - \frac{\partial \varphi}{\partial E} + Q(E)$$
$$\varphi = -D \frac{\partial N}{\partial x} \quad \text{(Fick Law)}$$

$$\frac{\partial N_i}{\partial t} = D\nabla^2 N_i + \frac{\partial}{\partial E} \left[b(E)N_i \right] + Q_i(E) - \frac{N_i}{\tau_i} + \sum_{j \ge i} P_{ij} \frac{N_j}{\tau_j}$$

CRs: Leaky-Box model approximation

- particles will diffuse staying confined in the galactic volume before escaping into intergalactic space
- can be modeled as particles diffusing inside a boxed volume freely and being reflected at its boundaries with some probability

• escape time
$$(\tau_e)$$
, $D\nabla^2 N \to -\frac{N}{\tau_e} \Rightarrow \left| \frac{N_i}{\tau_e} + \frac{N_i}{\tau_i} \simeq Q_i + \sum_{j \ge i} P_{ij} \frac{N_j}{\tau_j} \right|$ (steady state)

✓ relating particle density and source spectrum,

 $N(E) \sim Q(E) \cdot \tau_e(E) \propto E^{-(\alpha+\kappa)}$

source acceleration: $\alpha \sim 2.3$ diffusion: $\kappa \sim 0.4$ secondaries/primaries

CRs: elemental abundances

<u>secondaries</u>

- Iithium (Li)
- ✓ berylium (Be)
- ✓ boron (B)
- ✓ fluor (F)
- ✓ sodium (Na)
- ✓ aluminium (AI)

✓ sub-Fe

. . .

AMS LIP team

AMS02 detector and data colection

AMS is orbiting around earth at around 400 Km of altitude and taking data since May 2011

detector:

 high redundancy on measuring particle observables

on every day:

- ✓ around 40 million events gathered
- ✓ ~ 100 GBytes to transfer every day at 10 Mb/s through relay satellites (TDRS)

on every year:

✓ 16.5 10⁹ Triggers (Raw Data)

almost 150 billions of events gathered till now

AMS nuclei identification

Tracker (9 Layers) + Magnet: Rigidity (Momentum/Charge)

Charge	Coordinate Resolution	MDR
Z=1	~1 0 μm	2 TV
2≤Z≤8	5-7 μm	3.2-3.7 TV
9≤Z≤16	<mark>6-8</mark> μm	3-3.5 TV

L1, UToF, Inner Tracker (L2-L8), LToF and L9 Consistent Charge along Particle Trajectory

Charge	Inner Tracker Charge Resolution (c.u.)	
1≤Z≤8	0.05 - 0.12	
9≤Z≤16	0.13 - 0.19	

Primary Cosmic Rays Primary elements (proton, He, C, O, Ne ..., Fe) are produced during the lifetime of stars. They are accelerated by the explosion of stars (supernovae). uclei fusion in stars supernovae Proton Helium Carbon

Oxygen

CRs primaries: AMS protons, helium

CRs primaries: AMS protons, helium

CRs primaries: He, C, O

AMS He, C, O Spectra (2011 - 2018)

CRs primaries: He, C, O

AMS He, C, O Spectra (2011 - 2018)

- All spectra show deviation from single power law (break) and hardening at high rigidity power break related to source of transport?
- ✓ proton/helium anomaly: helium energy spectrum is harder than the proton spectrum it follows a power law $p/he \sim \left(\frac{R}{45GV}\right)^{-0.30}$
- He, C, O show an identical rigidity dependence above 60 GV hardening above 200 GV

CRs secondaries/primaries: B/C

$$\Box \text{ Boron equation: } \frac{N_B}{\tau_e} + \frac{N_B}{\tau_B} \simeq P_{C \to B} \frac{N_C}{\tau_C}$$
$$\Box \text{ boron to carbon ratio: } \frac{N_B}{N_C} \simeq \frac{P_{C \to B}}{\tau_C} \left(\frac{1}{\tau_e} - \frac{1}{\tau_B}\right)^{-1} \quad \Rightarrow \quad \left[\frac{N_B}{N_C} \propto \tau_e\right]$$
$$\text{ as } \tau_e \sim 10^6 y \ll \tau_B = \frac{1}{n v \sigma_{pp}} \sim 10^{18} y$$

AMS: positrons and antiprotons

AMS: positrons and antiprotons

AMS: protons and antiprotons

Jornadas LIP 2020 (Braga)

Solar activity indicators

Time variability

Jornadas LIP 2020 (Braga)

Isotopes identification with AMS02

mass determination

✓ It relies on **rigidity** $(R = \frac{pc}{Ze})$ and **velocity** measurements $(\beta = v/c)$

$$m = \mathbf{R} \ Z \ \sqrt{\frac{1}{\beta^2} - 1}$$

mass separation: what mass resolution is required?

depends on abundance balance but assuming 3σ separation....

Ζ	elements	$\frac{\sigma_m}{m}$	amount
1	2Н, Н	30%	2/100
2	4He, 3He	15%	80/20
3	7Li, 6Li	10%	50/50
4	10Be, 9Be, 7Be	3%	20/80
5	11B, 10B	3%	70/30
6	14C, 12C	2%	?/100

Charge (Z) measurement in many detectors
 tracker L1, UTOF, tracker L2-L8, LTOF, RICH
 ensures good charge separation

Velocity (β)

TOF, RICH

complementar (overlapping) kinetic ranges

Isotopes identification with AMS02

mass determination

✓ It relies on **rigidity** $(R = \frac{pc}{Ze})$ and **velocity** measurements $(\beta = v/c)$

 $m = \mathbf{R} \ Z \ \sqrt{\frac{1}{\beta^2} - 1}$

 mass separation: what mass resolution is required?

depends on abundance balance but assuming 3σ separation....

Ζ	elements	$\frac{\sigma_m}{m}$	amount
1	2H, H	30%	2/100
2	4He, 3He	15%	80/20
3	7Li, 6Li	10%	50/50
4	10Be, 9Be, 7Be	3%	20/80
5	11B, 10B	3%	70/30
6	14C, 12C	2%	?/100

Mass resolution

\checkmark different detector regions of β measurement

		$\left(\sigma_{\beta}/\beta\right)_{Z=1,2,3}$		
TOF	$E_k < 1.1 \; {\rm GeV/n}$	~ 4 %	~ 2 %	~ 1.5 %
RIGH NAF	$0.7 < E_k < 3.7 \text{ GeV/n}$	~ 0.35 %	~ 0.25 %	~ 0.15 %
RIGH AGL	$2.6 < E_k < 12 \text{ GeV/n}$	~ 0.12 %	~ 0.07 %	~ 0.05 %

L1

TRD

ш

0

2

Geomagnetic cutoff impact

- primary particles arrive to AMS with a minimum varying rigidity that depends on its location within the earth magnetic field
- Exposure time of the experiment is dependent on rigidity
- To notice that a rigidity cutoff corresponds to different thresholds on velocity for different isotopes (depends on A/Z)

mass template method

- \Box After applying Z selection: isotopes identification relies on the (β , Rig) measurement
 - The number of particles crossing the detector having measured observables R_m , β_m and true rigidity R_0 ,

 $dN \propto P(R_m) P(R_0|R_m) P[\beta_m|\beta_0(R_0,m)]$

 $= \Phi(R_0) dR_0 \ell(R_m; R_0) dR_m \ell(\beta_m; \beta_0) d\beta_m$

the other one

 \Rightarrow splitting data in β bins and distribute data in terms of mass $M = f(R_m, \beta_m)$,

$$\frac{dN}{dM} \propto \int_0^\infty \Phi(R_0) \, dR_0 \, \int_{\beta}^{\beta + \Delta\beta} \not(R_m | R_0, \sigma_{R_0}) \, \not(\beta_m | \beta_0, \sigma_{\beta_0}) \, \frac{\gamma \beta}{z} \, d\beta_m$$

 (R_0, M)

tracker | R_m

velocity $|\beta_m|$

Isotopic separation methods

folded rigidity template

 \Box Choosing a very thin sampling of β (bin $\Delta\beta_m \sim \sigma_{\beta}/10$)

 $P(\beta_0|\beta_m) = P(\beta_0) P(\beta_m|\beta_0)$

□ the selected events reflect the detector velocity resolution

Therefore, their distribution in terms of the true rigidity dN/dR_0 will show clearly separated

 \Rightarrow rigidity peaking at: $R_0(\beta_0, m_i)$ (β_0 energy loss corrections needed)

 \Rightarrow The rigidity spread reflects the velocity resolution: $\frac{\sigma_{R_0}}{R_0} \simeq \gamma^2 \frac{\sigma_{\beta_0}}{\beta_0}$

□ Build a folded rigidity template from true rigidity distributions

 $P(R_m,\beta_0) = P\left(R_0|\beta_0,\sigma_{\beta_0}\right) P\left(R_m|R_0(\beta_0,M)\right)$

Helium isotopes: rigidity distributions

✓ time period

May 2011 - Nov 2017 (6.5 years)

🗸 data sample

100 million events He418 million events He3

✓ selection

- $\beta > 0.3$ Z = 2 (Layer 1 crossed) same exposure time for both isotopes
- isotope population derived from unfolded rigidity

Jornadas LIP 2020 (Braga)

Fernando Barao (31)

Helium isotopes: flux ratio

Above rigidities of 4 GV, *He3/He4* flux ratio shows no dependency with time and is well described by power law,

$$\Phi \propto \left(\frac{R}{4 \; GV}\right)^{\alpha}$$

✓ ratio spectral index (α) shows no dependence with rigidity above 4 GV $\alpha = -0.29$

comparison with other sec/primaries measurements: B/C, B/O

Deuterons

- deuterons are secondaries essentially created by helium fragmentation
- although a large mass gap to protons (compared to heavier isotopes), its very low abundance rends difficult its separation from protons

mass templates have to include tail effects

Conclusions

AMS

is the only magnetic spectrometer in space it will continue to take data for the ISS life time (2024)

Jornadas LIP 2020 (Braga)

Helium: detector induced background

- ✓ Z selection based on independent detector measurements imply that helium sample contains negligible background from higher Z particles ($Z > 2, < 10^{-3}$)
- He4 fragments in the detector (mostly carbon and aluminum) into He3, H3, H2, H
 He3 contamination can be estimated using the Tritium produced which is purely background, as their production cross-section is very similar
- ✓ To estimate the amount of He3 detector induced in AMS, we charge select helium (Z=2) at the entrance of the detector (Tracker layer 1) and singly charged particles (Z=1) in the inner Tracker (layers 2 to 8)
 - Mass distribution of events interacting between both charge measurements (Tracker layer 1 and inner Tracker)
 - He3 contamination estimated as less than 10% for full analysis rigidity range

Contributions to protons and deuterons abundances from helium fragmentation in the detector have to be evaluated and subtracted

deuteron/proton

Helium isotopes: flux ratio

