ORTHOGONAL PROMPT-GAMA IMAGING (O-PGI) FOR MONITORING PROTON THERAPY Feasibility Studies

Andrey Morozov¹, Hugo Simões¹, and <u>Paulo Crespo^{1,2}</u>

LIP JORNADAS 2020 Braga – February 14-16, 2020

crespo@lip.pt

Challenges in proton RT

Change in brain density due to fractionated RT?

• Conjecture: brain tissue hypo/hyperdense due to fractionated RT

• A change of \pm 4% in the brain density leads to a variation of \pm 2 mm in the Bragg peak position

Multi-sliced detector for orthogonal prompt-gamma imaging

• O-PGI concept:

- Provides images of selected region without rotation of beam source

- Image with prompt gammas "stops" at beam range

• Monte Carlo results with proposed detector (Geant4):

- Deviations in the Bragg peak position are visible in the O-PGI counts profiles (perfect detectors)

(Cambraia Lopes et al, Physica Medica 2018)

Validation phases: before, present, and future

- Three stages in the validation study based on Monte Carlo simulations
 - Collimator + ideal detectors of particles (e.g. Sensitive Detector of Geant4)
 - Collimator + scintillators: analysis of energy deposition
 - Collimator + scintillators + light sensors
- Experimental validation

- Simulated proton beam:
 - 130 MeV
 - 300 protons per bunch
 - 1 ns FWHM bunch width
 - 10 ns repetition rate
- Emission of prompt gammas correlates with the linear dose density
- There is a strong background (secondary gammas induced by neutron reactions)
- Gamma yield is relatively low

• Results with simulated proton beam:

Ideal detector:

- Extracted edge position vs true edge position
- Data for several relative positions of the Bragg peak and the collimator's first blade are processed
- Sigma = 0.24 mm => 0.564 mm FWHM

Energy deposition (GSO crystals):

Energy deposition (GSO crystals):

Energy deposition profile vs scintillator index

Energy deposition (GSO crystals):

- Extracted edge position vs true edge position
- Data for several relative positions of the Bragg peak and the collimator's first blade are processed
- Sigma = 1.1 mm => 2.6 mm FWHM

Optical photons (GSO crystals):

LIP JORNADAS 2020 • Braga • February 16, 2020

crespo@lip.pt

Optical photons (GSO crystals):

• "Waveform": light sensor signal vs time for one of the scintillator plates

LIP JORNADAS 2020 • Braga • February 16, 2020

Optical photons (GSO crystals):

- Optical trapping
 Collection efficiency reduces with the depth of interaction (Dol)
- Waveform fit precision depends on statistics
 need to apply a threshold on the amplitude
- To be explored:
 - YAP (instead of GSO): rise time ~ 0.5 ns
 - Semi-supervised collimator optimization in ANTS2
 - 200 MeV protons (pelvic irradiation)

 Collection efficiency vs Dol for two cases: sensor has GSO-matching window and realistic glass window

14/16

Planned experiment for Monte Carlo validation

• First version of a validation prototype (already constructed) to be tested at PCTHolland facility

 Planned experimental setup (oscilloscope missing)

Bunker	Proton boom	Target	
Cyclotron	(130 MeV or 200 MeV)	Scintillation crystals	Adjustable position
Radiofrequency (RF) signal	Acr guid	ylic light des	PMTs
NOT TO SCALE		Channel: 0 1 2 20 GS/s	
	Contr	ol room	lloscope

LIP JORNADAS 2020 • Braga • February 16, 2020

Thank you for your attention.

LIP JORNADAS 2020 • Braga • February 16, 2020

crespo@lip.pt

