Compact gamma camera: from design to prototype

João Marcos on the behalf of Gamma camera group

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Jornadas do LIP

Braga, 14-16 February 2020

Motivation

0 UNIVERSIDADE D COIMBRA

Design, construction and optimization of compact gamma cameras for clinical and pre-clinical applications

1. Thyroid

Heathy Thyroid

Clinical Functional imaging

Thyroid scintigraphy with 99mTc showed a nodule of the left lower pole

2. Sentinel lymph node biospy

SLN biopsy needs **realtime imaging**

DOI: https://doi.org/10.1515/bmt-2016-0164

Pre-clinical imaging

From University of Ottawa Heart Institute gallery

Camera design

 \rightarrow Objective is to optimize camera parameters:

- crystal thickness: efficiency *vs* spatial resolution
- crystal side finishing: light collection *vs* field of view
- lightguide thickness: resolution *vs* distortions

\rightarrow Done by means of ANTS2 simulations

Validation by comparing with experimental data: good agreement in the end

Compact camera prototypes

UNIVERSIDADE D COIMBRA

GAGG prototype

LYSO prototype

• LYSO has better efficiency and intrinsic resolution, however it is radioactive and has too much of intrinsic background for imaging of weaker sources (as in SLN surgery)

• GAGG, with much lower radioactive background, is more sutable in this case

Camera perspective - reflector removed

Collimator models in ANTS2

Parallel-hole collimator

Target parameters

Minimal requirements for SLN imaging also suitable for thyroid:

Spatial resolution: < 0.5 cm at 5 cm

Efficiency: > 0.0001 (100 cps/Mbq)

Pinhole collimator (magnification factor = 2)

Collimators design

Parallel-hole collimator trade-of curves

Optimized parameters: d = 0.05 cm, septa t = 0.03 cm, height = 0.8 cm

Collimators prototypes

Parallel-holes collimator (hexagones 0.5 mm "diameter)

Made of tungsten using Selective laser melting

- Specification by João Marcos
- **Designed** by Eng. Rui Alves (LIP mechanical workshop)
- Manufactured by M&I Materials

Pinhole collimator (1 mm hole, 0.5 mm channel edge height)

Made of Tungsten alloy (95.5% W, 4.5% Co)

- Specification by João Marcos
- **Designed** by DURIT (Albergaria-a-Velha)
- Manufactured by DURIT

Readout and acquisition system

TRB3 (GSI) based readout for 64 channels

Readout and acquisition system

1 2 9 0

Signal

Channels per ph.e.: 42.8

ADC channels per photoelectron

Conversion of the waveform integral into number of photoelectrons

Real-time acquisition workflow

UNIVERSIDADE Đ

COIMBRA

1 2 . 9 0

Real-time imaging

Snapshots of ANTS2 reconstruction and visualization in real-time

DAQ performance

9 0 UNIVERSIDADE Đ COIMBRA

Transfer rate

Acquisition rate vs # of waveform samples

.HLD file size

Prototypes characterization

Performed at **University Hospital of Coimbra** in collaboration with Eng. Jorge Isidoro, Eng. Paulo C. Gil, Dr^a Gracinda Costa and Dr. Rodolfo Silva

Compact gamma camera

Control and storage (PC + mini-PC)

Readout system box

UNIVERSIDADE Ð COIMBRA

Masks and phantoms

UNIVERSIDADE Ð COIMBRA

Capillary tube

Intrinsic assessment

GAGG prototype: 0.9 mm FWHM | LYSO prototype: 0.72 mm FWHM

Spatial resolution Event density vs XY 18 250 15 16 10 -14 200

Y, mm

X1 projection fwhm = 0.924619 mean = -3.19441 whm = 0.953872 fwhm/mean = -0.289449 mean = 3.52644 fwhm/mean = 0.270492

Linearity

Y1 projection

1.5

Extrinsic spatial resolution

UNIVERSIDADE D COIMBRA

9 0

Parallel-hole collimator

^{99m}Tc source solution inside a capillary tube

Measured (FWHM):

1.5 mm at 5.8 mm

2.8 mm at 31 mm

4.4 mm at 60 mm

7 mm at 106 mm

^{9 0} COIMBRA

Extrinsic spatial resolution (parallel-hole) collimator (cm) - Experimental vs Numerical (ANTS2) -

Extrinsic spatial resolution

UNIVERSIDADE Ð COIMBRA

M = 0.36, FWHM = 1.27 mm (object res. = 3.53 mm FWHM)

M = 0.50, FWHM = 1.31 mm (object res. = 2.62 mm FWHM)

Pinhole collimator

 $\mathbf{M} \rightarrow \text{magnification}$ factor

Resolution at the object plane = spatial resolution at the detector plane divide by M.

Phantom imaging

90 **COIMBRA**

Brain slice phantom

Pinhole collimator

Event density vs XY

Parallel-hole collimator

Crossed capillary tubes phantom

Event density vs XY

Conclusions and future work

UNIVERSIDADE D COIMBRA

Summary of developed work

- Lightguide optimization for GAGG prototype
- Two collimators designed and manufactured
- Assembed two compact gamma camera prototypes
- Development of 64-channel FEE and readout system
- Assessment of prototype intrinsic performance:
 - LYSO prototype: 0.72 mm FWHM
 - GAGG prototype: 0.90 mm FWHM
 - Absolute linearity better than 0.3 mm
- Gamma camera resolution (with collimator):

1.0 mm FWHM (pinhole and 2x magnification)

1.5 mm FWHM at 6 mm source to parallel-hole collimator

Future work

- Clinical test of full-scale camera (50x50 mm²) for thyroid imaging at nuclear medicine department of University Hospital of Coimbra

Thank you.

EXTRA MATERIAL

ONIVERSIDADE D COIMBRA

Self-organizing maps

SOM is an unsupervised iterative learning algorithm that has a training phase.

For a gamma camera response model, a bi-dimensional map (grid of cells) is built saving in each cell a vector with the average sensor signals which correspond to a source position at the camera FOV.

In the reconstruction phase, the event position is obtained as the cell position for which the vector of expected signals has the smallest Euclidean distance to the vector of measured signals.

Grid of 11x11 pencil beam sources

-15,

-10,

-5,

5,

X, mm

Collimators design

Pinhole collimator trade-of curves

Target parameters:

Spatial resolution: < **0.5 cm** at 5 cm (sourceto-collimator)

Efficiency: > 0.0001 (100 cps/MBq)

Extrinsic assessment

UNIVERSIDADE Ð COIMBRA

Depth of interaction in GAGG

zScan

UNIVERSIDADE Đ COIMBRA

Ilustration of the light response function of a photosensor (camera response model)

Compact camera optimization

UNIVERSIDADE D COIMBRA

GAGG prototype optimization using ANTS2 and Geant4

Optimal lightguide thickness: 0.8 mm - 1.0 mm

Validation of collimators design equations

UNIVERSIDADE Ð COIMBRA

Parallel-hole collimator

Pinhole collimator (magnification factor = 2)

UNIVERSIDADE D COIMBRA

Summary of prototypes performance

Prototype	Uniformity ^a Int, Diff X, Diff Y (%)	Linearity ^b Abs, Diff (mm)	Spatial resolution (mm)	Energy resolution (%)	Extrinsic spatial resolution (mm)		
					@ 6 mm (P.H.) ^{c}	@ 50 mm (P.H.)	@ 47 mm (Pin.) ^{d}
GAGG	72.6, 78.9, 79.9	0.214, 0.191	0.90	29	1.53	3.9	1.64
LYSO	77.7, 82.2, 82.7	0.269, 0.096	0.72	29	1.49	3.9	1.64

Table 6.3: Gamma camera prototypes performance parameters. The parameters were assessed for the UFOV of $28 \times 28 \text{ mm}^2$. In the extrinsic spatial resolution assessment, the reported values correspond to distances measured from the source to the collimator face in the case of the parallel-hole collimator and to distances measured from the source to the detector in the case of the pinhole collimator.

^aUniformity is reported as the integral (Int) and differential uniformity in X and Y (Diff X, Diff Y).

^bLinearity is reported as the absolute (Abs) and differential (Diff) linearity, according to NEMA standard 82.

 $^{c}\mathrm{"P.H."}$ is a short for Paralle-hole collimator.

^d"Pin." is a short for Pinhole collimator. Note that the focal lenght is 23.5 mm, so for a source-to-detector distance of 47 mm, the source-to-pinhole distance is also 23.5 mm, which results in no magnification.

Conclusions and future work

Prototypes characterization

UNIVERSIDADE Ð COIMBRA

Parallel bars (manufactured in LIP workshop)

