Space Rad Activities @ LIP

Luísa Arruda, Marco Pinto, Patrícia Gonçalves, Jorge Sampaio, Luís Sintra

LIP Jornadas 14-16 Feb 2020, Braga

ESA JUICE mission RADEM – Radiation Hard Electron Monitor

LIP ESA contracts

ESA Mars Energetic Radiation Environment Model

GEO Radiation Environment:

- Radiation Environment Measurement (MFS)
- EEE component test bed (CTTB)

Space Radiation Environment

Van Allen Radiation Belts

Protons and electrons AP-8 and AE-8 models

Galactic Cosmic Radiation (GCR)

p,α, O and Fe ISO 15390 Solar min: 30 Jan 2009 Solar max: 30 Jan 2014 1 AU from Earth

SEP event

Protons Integrated 14 day SEP event of December 2006

Data Analysis & Tools The MFS & The CTTB on ALPHASAT

 The Alphasat launched to GEO July 2013 carrying the AEEF

- AEEF (TDP8) = MFS + CTTB
- Both installed on X-panel of the Alphasat

MFS: MultiFunctional Spectrometrer CTTB: Component Technology Test Bed

The MultiFunctional Spectrometer

ALPHASAT TDP-8 MFS PARTICLE SPECTROMETER DATA ANALYSIS

ESA/ESTEC CONTRACT 3-14025/13/NL/AK with EFACEC and LIP

MFS requirements

- Electrons 300 KeV-7 MeV
- Protons
 1 MeV 200 MeV
- Alpha particles 5 MeV 200 MeV
- Heavy Ions 5 MeV/nuc 50 MeV/nuc

The MultiFunctional Spectrometer Response Functions

Obtained with Geant4 detailed simulation and analysis of the MFS response

MFS Geant4 Mass Model Generated with GUIMesh*

Protons

MFS Flux Spectra Reconstruction Jan 2014 Electron SEP

 $C_{i} = \sum_{q=p,e} C_{i,q} = \sum_{q=p,e} \left| \int_{0}^{\infty} f_{q}(E) RF_{i,q}(E) dE \right| \begin{cases} f_{q}(E) \text{ differential omni-differential fluxes } [cm^{-2}MeV^{1}s^{-1}] \\ RF_{i,q}(E) MFS \text{ response functions for } q=p,e. \end{cases}$

MFS Flux Spectra Reconstruction Jan 2014 Electron SEP

$$C_{i} = \sum_{q=p,e} C_{i,q} = \sum_{q=p,e} \left[\int_{0}^{\infty} f_{q}(E) RF_{i,q}(E) dE \right]$$

 $f_q(E)$ differential omni-differential fluxes [$cm^{-2}MeV^{-1}s^{-1}$] $RF_{i,q}(E)$ MFS response functions for q=p,e.

New

Flux unfolding using Machine Learning Techniques

See L. Sintra Poster!

CTTB Data Analysis

FLIGHT DATA ANALYSIS OF TDP-8 RADIATION EXPERIMENTS

ON-BOARD ALPHASAT

ESA/ESTEC CONTRACT 4000115004/15/NL/RA/ZK

Component Technology Test Bed

3 experiments:

- GaN transistors (Aveiro)
- Optical Links (Valencia)
- Memories

efacec EVOLEO

CTTB Dose Assessment

- In-flight data compared with Geant4 results
- Standard radiation models were evaluated

CTTB Geant4 Mass Model

Generated with GUIMesh (M. Pinto and P. Gonçalves, DOI: <u>https://doi.org/10.1016/j.cpc.2019.01.024</u>)

CTTB: Radiation Effects

11

tuto de

Mars Radiation Environment: dMEREM

LIP developed dMEREM (ESA contract 19770/06/NL/JD)

Geant4 based model for the radiation environment of Mars, Phobos and Deimos

- Includes local treatment(5 x 5 degree grid and season)
- Surface topography composition
- Atmospheric composition
- Density
- Local magnetic fields
- Diurnal + annual variations

Mars radiation environment

For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions.

RAD (Radiation Assessment Detector) measuring and identifying high-energy radiation at Mars surface since Aug 12 RAD

First in-situ data to validate radiation environment models at Mars surface

dMEREM validation SEP Set 17 and GCR measured by RAD

FUTURE WORK FOR MARS

Radiological risk assessment on manned missions to Mars

Modelling Mars radiation environment underground and study its astrobiological implications

Geant4-DNA studies

Project to be submitted to on-going PTDC call

Radiation Hard Electron Monitor (RADEM) for the JUICE mission

ESA/ESTEC Contract 1-7560/13/NL/HB

Ganymede What are the conditions for planet formation and orbit 500 km emergence of life? 148 days **Cosmic Vision** Emergence of habitable worlds around gas giants L-class Mission How does the Solar System work? Ganymede Jupiter system as an archetype for gas giants orbit 5000 km Launch 152 days 2022 First mission dedicated to the Icy moons High Latitude Transfer to Transfer Europa Flybys Cruise with Callisto Ganymede to Europa 38 days 7.6 years 311 days 38 days 458 days

esa

ideas

PAUL SCHERRER INSTITUT

efacec

Jupiter Radiation Belts

□ Intense electron population

- Electron data up to 11 MeV
- Long-term proton data up to 1.25 MeV

Region dependent angular variability

Consequence of particle dynamics

□ Many Open Questions

RADEM - Requirements

- □ Measure electron flux
- Spectral range 300 keV 40 MeV
- Peak Flux 10⁹ e/cm²/s
- Electron Directional Distribution

Measure proton flux

- Spectral range 5 MeV- 250 MeV
- Peak Flux 10⁸ p/cm²/s

□ Measure Heavy Ion population

- From Helium to Oxygen
- 8 to 670 MeV
- In-flight dose calculation

Low power

- Low mass (~3 kg currently)
- Rad-Hard

RADEM – Detector Overview

RADEM – Directionality Detector Proof-of-Concept

Studied with Geant4 simulations

- Considered each zenithal direction
- Same cutoff
- Same sensor area
- Average over the 9 sensors
- Different mission phases analyzed
- Phase average fluxes
- Omnidirectional flux

RADEM Geant4 Mass Model Generated with GUIMesh (M. Pinto et al, DOI: <u>https://doi.org/10.1016/j.cpc.2019.01.024</u>)

RADEM – Directionality Detector Angular Response

(M. Pinto et al., DOI: <u>10.1109/TNS.2019.2900398</u>)

RADEM – Current Status (M.Pinto et al.: https://doi.org/10.1016/j.nima.2019.162795)

BreadBoard Model Tested in 2016

Low threshold [keV

RADEM – Scientific Opportunities

Interplanetary radiation Environment (Jovian electrons)

Solar Energetic Particles

Galactic Cosmic Rays

Venus CRAND

Mars CRAND

Earth Radiation Belts Cross-calibration (BERM and others)

RADEM – Scientific Opportunities

Jupiter CRAND as a source of protons

Jupiter-Moon interactions

Constrain Acceleration Mechanism

Improve Radiation models

Astrobiological implications of radiation

GUIMesh

New method – fully developed by LIP

Menu	
nd FreeCAD Dir	JUI-EFA-RDM-ML JUI-EFA-RDM-ML JUI-EFA-RDM-ML
Read STEP	JUI-EFA-RDM-ML JUI-EFA-RDM-ML JUI-EFA-RDM-ML
World Size	JUI-EFA-RDM-ML JUI-EFA-RDM-ML JUI-EFA-RDM-ML
ave Properties	JUI-EFA-RDM-ML JUI-EFA-RDM-ML JUI-EFA-RDM-ML
oad Properties	JUI-EFA-RDM-ML JUI-EFA-RDM-ML JUI-EFA-RDM-ML
aterial Manager	JUI-EFA-RDM-ML JUI-EFA-RDM-ML
Write GDML	JUI-EFA-RDM-ML JUI-EFA-RDM-ML
Exit Program	JUI-EFA-RDM-ML JUI-EFA-RDM-ML
	JUI-EFA-RDM-ML
atus:	
CAD landad	

STEP file loade

Volume List		Volume P
Volume List Volume List ML-012 20 PCB 9R ML-012 20 PCB 9R ML-012 20 PCB 9R ML-012 10 Pak-Stack Space A1 B ML-012 10 Pak-Stack Cable Set_C ML-012 20 PCB 11R ML-022 10 Pak-Stack Cable Set_C ML-012 20 PCB 11R ML-032 10 Pak-Stack Cable Set_C ML-012 10 Pak-Stack Cable S1 ML-031 01 Pak-Stack Cable S1 ML-031 01 Pak-Stack Cable S1 ML-032 10 Pak-Stack Cable S1 ML-032 10 Pak-Stack Cable S1 ML-032 10 Pak-Stack Cable Set_C ML-032 20 PCB 11R ML-032 10 Pak-Stack Cable Set_C ML-032 20 PCB 11R ML-032 10 Pak-Stack Cable Set_C ML-032 10 Pak-Stack Cable Set_D ML-032 10 Pak-Stack Cable Set_D ML-032 10 Pak-Stack Cable Set_D ML-032 10 Pak-Stack Cable Set_D ML-032 10 Pak-Stack Cable Set_D		Volume P Name: JUI-EFA-RDM-ML-C Material: G4_SI Volume: 0.0507656323482 Mass: 0.118283923371 g MMD: 0.1 mm Change F Change GD r: Set All
mE-037 T.0 Poli-stack Gable 32	1.	

operties

Write GDML: Yes

ateria

ML Option

nail: mopinto11@omail

a x b CAD Model STL Model

Leverages on the mesh format

Effect on computation studied

Precision and materials customable

Application extends to other relevant fields

Mesh format Open source (M. Pinto et al., DOI: <u>https://doi.org/10.1016/j.cpc.2019.01.024</u>)

GUI Mesh

A Graphical User Interface to convert STEP files into GDML

Future of Space Rad

ESA ROADMAP

Future of Space Rad

ESA ROADMAP

Future of Space Rad

ESA ROADMAP

Backup Slides

Future work with dMEREM

- Radiological risk assessment on manned missions to Mars
- Modelling Mars radiation environment underground and study its astrobiological implications
 - Gent4-DNA studies
- Project to be submitted to on-going PTDC call

Radiation Environment in the Solar System

Galactic Cosmic Rays

low flux but highly penetrating protons & nuclei

Solar Energetic Particles sporadic, intense & dangerous

electrons & protons electrons , protons & ions

 $10^9 ext{ } 10^{10} ext{ } 10^{12} ext{ } 10^{13} ext{ } 10^{14} ext{ } 10^{16} ext{ } 10^{17} ext{ } 10^{18} ext{ } 10^{19} ext{ } 10^{20} ext{ } 10^{10} ext{ }$

GCR and Solar cycle activity

Modulation with solar activity – 11 yr cycle Solar cycle modulated flux inversely proportional to the Sun's activity

Maximum: solar storms and SEP Minimum: more GCR

SEP – Solar energetic particles

Associated to

- Solar flare
- Coronal mass ejections (CME)
- Mainly protons and electrons
- Energies from several hundred LMEYON 976 BY Selft @ https://umbra.nascom.nasa.gov/SEP

At **Earth's surface**, the **atmosphere** in conjunction with the **geomagnetic field** provides considerable protection against cosmic rays and solar particle events!

In **Space**, SEPs are responsible for spacecraft system and component hazard and 33 damage and impose strict constrains on human space exploration

Earth radiation belts

 Particles coming from Space depending on their R may be trapped by the geomagnetic field and form the Earth's radiation belts.

In Earth's orbits the radiation belts containing

 Inner belt (700-10000km) Dominated by p Product of CR Neutron Decay E~100's MeV

• Outer belt (~20000-70000km) Dominated by e-Controlled by "storms" Dominates GEO environment & Navigation (Galileo, GPS) orbits

MFS data analysis

Correlation with eventual variations in CTTB EEE measurements

Mars Radiation Environment: dMEREM

LIP developed **dMEREM** (ESA contract 19770/06/NL/JD), a **Geant4 based model for the radiation environment on Mars, Phobos and Deimos**, including local treatment of surface topography and composition, atmospheric composition and density (including diurnal + annual variations) and local magnetic fields.

Inputs given as a function of latitude, longitude, in a 5 x 5 degree grid, and season

 Co- supervision of Master Thesis by P.
 Magalhães: "Radiation Environment and its Effects on the Martian Surface and Underground"

Mars radiation environment

RAD CONTRACTOR OF CONTRACTOR O For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions.

RAD (Radiation Assessment Detector) measuring and identifying high-energy radiation on going PhD thesis at Life on Mars Marsalutione since August study and RAD detector simulation by A. Casimiro.

Improving Mars radiation environment models

- Update **dMEREM** with different inputs
 - atmosphere composition
 - soil composition (available from measurements on MSL/Curiosity)
- Introduce granular information on the arrival directions of all particles reaching a specified location: simulate RAD FOV
- Update to Geant4.10.04 or higher
- Introduce more appropriate physics lists to describe the hadronic and electromagnetic processes.

The ground-level radiation environment will be simulated with dMEREM at possible landing exploration sites.

- Different contributions to the radiation environment:

ALPHASAT TDP-8 MFS PARTICLE SPECTROMETER DATA ANALYSIS

MFS data analysis

ESA/ESTEC CONTRACT 3-14025/13/NL/AK with EFACEC and LIP

Consolidate MFS Calibration Data and Monte Carlo Simulation

Design MFS Data Design MFS Database **Analysis Software** with Web Interface Develop the (WP4000) algorithm for particle Develop and Validate **Develop and Validate** energy spectra MFS Data analysis MFS Database with Web reconstruction esa Software Interface WP6000 MFS Data analysis and cross-comparison with other radiation DR Running, efacec maintenance and updates 39 (WP8000)

MFS data analysis

>30 MeV Proton Flux

➢ Monitor p and e⁻s fluxes

➢Flux unfolding method need to be revised in order to have a more precise flux measurement specially for the e⁻s.

SVD and/or ANN methods

Unfolded fluxes will be made available to the scientific community.

Analysis of more SEP events registered in GEO with the MFS in the last solar cycle-24 and future occurrences

aim: contribute to a better understanding on SEP

40

MFS data analysis

Continuous monitoring of MFS data

➢ MFS is the only ESA radiation monitor at GEO. Make it very interesting to study electron radiation belts.

Monitoring of MFS measurements

Correlation with eventual variations in CTTB EEE measurements⁴²

NOAA SPACE ENVIRONMENT SERVICES CENTER Solar Proton Events Affecting the Earth Environment

Preliminary Listing

1976 - present

A current listing can be found at: http://ftp.swpc.noaa.gov/pub/indices/SPE.txt

PARTICLE EVENT				ASSOCIATED CME, FLARE, AND ACTIVE REGION				
Start (Day/UT)	Maximum (Day/UT)	Proton Flux (pfu @ >10 MeV)	Year	СМЕ	Maximum (Day/UT)	Importance (X ray/Opt)	Location	NOAA SEC Region No.
			2014			[ľ	ĺ
Jan 06/0915	Jan 06/1600	42		Asymm. Partial Halo/06 0800	(Farside)			11936
Jan 06/0915	Jan 09/0340	1033		Asymm. Partial Halo/07 1824	07/1832	X1	\$15W11	11944
Feb 20/0850	Feb 20/0925	22		Asymm. Full Halo W. limb/20 0800	20/0755	M3	\$15W67	11976
Feb 25/1355	Feb 28/0845	103		Asymm. Halo/25 0130	25/0049	X4	S12E82	11990
Apr 18/1525	Apr 19/0105	58		CME (C3)/18 1325	18/1303	M7	\$16W41	12036
Sep 11/0240	Sep 12/1555	126		Asymm. Full Halo/10 1800	10/1745	X1	N16W06	12158
			2015					
Jun 18/1135	Jun 18/1445	16		Narrow SW limb event/18 0125	18/0127	M1	SW limb	12365
Jun 21/2135	Jun 22/1900	1070		Full halo/21 0236	21/0236	M2	N13W00	12371
Jun 26/0350	Jun 27/0030	22		Asymmetric full halo/25 0836	25/0816	M7	N12W40	12371
Oct 29/0550	Oct 29/1000	23		Far-sided on W limb, S11/29 0236	(Farside)			12434
			2016					
Jan 02/0430	Jan 02/0450	21		SW limb event/02 2324	02/0011	M2	\$21W73	12473
			2017					
Jul 14/0900	Jul 14/2320	22		Asymmetric full halo/14 0125	14/0209	M2	S06W29	12665
Sep 05/0040	Sep 08/0035	844		Asymmetric full halo/04 2042	04/2033	M5	S11W16	12673
Sep 10/1645	Sep 11/1145	1490		Asymmetric full halo/10 1600	10/1606	X8	S08W83	12673

Mars Radiation Environment: dMEREM update

• Co- supervision of Master Thesis by P. Magalhães: "Radiation Environment and its Effects on the Martian Surface and Underground" @IST, 7Jun 16

LIP developed **dMEREM**

(ESA contract 19770/06/NL/JD), a Geant4 based model for the radiation environment on Mars, Phobos and Deimos, including:

➤ soil composition

atmospheric composition
 and density (including diurnal
 + annual variations) and local
 magnetic fields

This model was updated to register the flux of energetic particles at different soil depths. Interesting for astrobiological studies in Mars⁴⁴

dMEREM results:

Particle radiation arriving on Mars surface & underground resulting from GCR-proton spectrum

