LIP activities in COMPASS experiment at CERN

M. Stolarski & M. Quaresma on behalf of the COMPASS LIP group

15-II-2020

COMPASS at CERN

• COmmon Muon Proton Apparatus for Structure and Spectroscopy

- Fixed target experiment, with muon and hadron beam
- Collaboration of 12 countries and about 220 physicists
- PHASE-I data taking in 2002-2011
- Currently PHASE-II ongoing (last data taking in 2021)
- Possible Extension: COMPASS++/AMBER 2021+

Physics Goals

Phase I

- Muon beam program
 - gluon polarisation in the nucleon
 - spin dependent structure functions
 - polarised quark distributions
 - unpolarized fragmentation functions
- Hadron beam program (pion polarizability, hadron spectroscopy, exotics searches)
- Phase II
 - Transverse Momentum Dependent functions (TMDs)
 - with hadron and muon beams!
 - Generalized Parton Distribution functions (GPDs)
 - Unpolarized fragmentation functions

RED - Present LIP activities, BLUE - Past LIP activities

COMPASS LIP group

- Researchers:
 - Catarina Quintans (group leader)
 - Celso Franco
 - Pietro Faccioli
 - Marcia Quaresma
 - Marcin Stolarski
- Post-docs:
 - Ana Sofia Nunes (Left to BNL in Jan 2019)
- Students:
 - In the course of the two years there were 4 students from Italy (ERASMUS+), and 5 students on LIP internships
- Engineer:
 - Christophe Pires

LIP Activities - Detector Control System

- LIP group has full responsibility of COMPASS Detector Control System
- New equipments have to be integrated
- Standards continuously evolve, thus the system has to be kept up-to-date
- During data taking, DCS on-call must be guaranteed non-stop for 6 months

LIP group Activities - Fragmentation Functions

- FF are needed in analyses which deal with a hadron(s) in the final state
- IDEA: K^+ $(u\bar{s})$ has different probability to originate from d-quark than $\pi^ (d\bar{u})$
- In Leading Order QCD Fragmentation Function D^h_q describes probability density for a quark of flavour q to fragment into hadron of type h
- Fragmentation functions are measured via. Hadron Multiplicities, *i.e.* number of observed hadrons divided by a number of DIS events
- Measured hadron multiplicities need to be corrected for various effects e.g.
 - spectrometer acceptance & reconstruction program efficiency
 - RICH efficiency & purity (for π and K)
 - radiative corrections

Kinematic Variables

 Q^{2} :

- negative four-momentum transfer from lepton to nucleon
- Q^2 is a photon resolution
- $Q^2pprox 1{
 m GeV}^2
 ightarrow \delta rpprox 1$ fm
- DIS: $Q^2 > 1 \text{ GeV}^2$ the perturbative region

Bjorken x:

• in the frame of the proton infinite momentum, x is the fraction of the proton momentum carried by the quark (parton)

 ν :

h

• photon energy
$$\nu = Q^2/2Mx$$

adron z

- the energy ratio of the hadron to the virtual photon
- variable used in SIDIS

Improvement of RICH PID (done fully at LIP)

- Originally Likelihood was used to separate π from K
- We used NN to correct internal description of the RICH optical system, effectively correcting θ angle of the emmited Chernkov light.

Multiplicities Ratios K^-/K^+ and \bar{p}/p

- In the multiplicity ratio many experimental and theoretical uncertainties cancel
- In LO pQCD one can calculate a lower limit for the ratios, $R_{K,(p)} = M^{K(p)^-} / M^{K(p)^+}$
- $R_{K,p} > \frac{\bar{u}+d}{u+d}$; isoscalar target (note lack of D_q^h in the limit!)

COMPASS LIP group

R_K vs Missing mass

- High-z kaon ightarrow reduced phase space for other particles
- But conservation laws need to be fulfilled (strangeness, baryon number)
- Natural variable to study such effect is a missing Mass, $M_{
 m X}$
- $M_{\rm X} \approx \sqrt{M_{\rm p}^2 + 2M_{\rm p}\nu(1-z) Q^2(1-z)^2}$
- Indeed R_K vs M_X shows a smooth trend!

Ratio \bar{p}/p for isoscalar target

• Results are below the lower limit predicted by LO pQCD

R_p vs. R_K

- R_p and R_K lower limits are the same in LO pQCD
- We expect $R_K/R_p pprox 1.10 \pm 0.05$
- Clearly very different results seen in data

COMPASS is the first to observe all these effects, which are important to be taken into account by theorists

pion induced Drell-Yan

Marcia Quaresma (COMPASS & AMBER)

15 February 2020 1/9

Motivation for the Drell-Yan programme

proton is a very complex object: study the constituents of the proton (quarks and gluons) understand the forces between them

what is the **origin of the proton properties**

such as **spin** and **mass**?

Motivation for the Drell-Yan programme

why is it important to study the **transverse structure of the proton**? Connection with the **orbital angular momentum of partons**

Motivation for the Drell-Yan programme

proton is a very complex object: study the constituents of the proton (quarks and gluons) understand the forces between them

what is the **origin of the proton properties**

Drell-Yan is an excellent process to study the **nucleon** and the **meson structure by measuring the parton distributions inside those hadrons**

using different beam particles \longrightarrow

access **different quark flavours** in **different hadrons** (i.e. protons, pions, kaons)

using polarised targets — access the **spin dependent** hadron structure

Marcia Quaresma (COMPASS & AMBER)

Jornadas LIP

2018 data-taking

Successful data-taking with major contributions from our group

From April to November 2018: 217 days of beam rather smooth data-taking LIP helpful quasi-online analysis

Preliminary production of all data collected (1.8PB) Optimisation of events reconstruction os ongoing

Marcia Quaresma (COMPASS & AMBER)

several analyses ongoing

Polarised data (NH3):

- Transverse Spin Asymmetries Unpolarised data (NH3, Al, W):
- unpolarised Asymmetries
- cross-sections
- nuclear dependences

several analyses ongoing

Polarised data (NH3):

- Transverse Spin Asymmetries Unpolarised data (NH3, Al, W):
- unpolarised Asymmetries
- cross-sections
- nuclear dependences

several analyses ongoing

Polarised data (NH3):

- Transverse Spin Asymmetries Unpolarised data (NH3, Al, W):
- unpolarised Asymmetries
- cross-sections
- nuclear dependences

Our group is leading the studies on the machine learning techniques for background rejection in the Drell-Yan analyses

Polarised data (NH3):

Transverse Spin Asymmetries

Unpolarised data (NH3, Al, W):

- unpolarised Asymmetries
- cross-sections
- nuclear dependences

Acceptance corrections cancel Better control of **systematics**

Polarised data (NH3):

- Transverse Spin Asymmetries
- Unpolarised data (NH3, Al, W):
- unpolarised Asymmetries
- cross-sections

 H_{A}

nuclear dependences

Acceptance corrections cancel Better control of systematics

For single transversely polarised LO DY:

$$d\sigma^{DY} \propto \left(1 + \lambda \cos^2(\theta_{CS}) + \sin^2(\theta_{CS}) A_{UU}^{\cos(2\phi_{CS})} \cos(2\phi_{CS})\right) + S_T \left[(1 + \cos^2(\theta_{CS})) A_{UT}^{\sin(\varphi_S)} \sin(\varphi_S) + \sin^2(\theta_{CS}) \left(A_{UT}^{\sin(2\phi_{CS} - \varphi_S)} \sin(2\phi_{CS} - \varphi_S) + A_{UT}^{\sin(2\phi_{CS} + \varphi_S)} \sin(2\phi_{CS} + \varphi_S) \right) \right]$$

Jornadas LIP

For single transversely polarised LO DY:

$$d\sigma^{DY} \propto \left(1 + \lambda \cos^2(\theta_{CS}) + \sin^2(\theta_{CS}) A_{UU}^{\cos(2\phi_{CS})} \cos(2\phi_{CS})\right) + S_T \left[(1 + \cos^2(\theta_{CS})) A_{UT}^{\sin(\varphi_S)} \sin(\varphi_S) + \sin^2(\theta_{CS}) \left(A_{UT}^{\sin(2\phi_{CS} - \varphi_S)} \sin(2\phi_{CS} - \varphi_S) + A_{UT}^{\sin(2\phi_{CS} + \varphi_S)} \sin(2\phi_{CS} + \varphi_S) \right) \right]$$

Polarised data (NH3):

- Transverse Spin Asymmetries
 Unpolarised data (NH3, Al, W):
- unpolarised Asymmetries

🔾 2015 data - PRL 119 (2017) 112002

Marcia Quaresma (COMPASS & AMBER)

Jornadas LIP

15 February 2020 5/9

Polarised data (NH3):

- Transverse Spin Asymmetries
- Unpolarised data (NH3, Al, W):
- unpolarised Asymmetries
- cross-sections
- nuclear dependences

Acceptance corrections mandatory Monte-Carlo dependence

Our group is contributing for the improvement of the MC description of the apparatus and the detectors and trigger efficiencies

For unpolarised DY:

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$$

Naive LO process: $\lambda = 1$, $\mu = \nu = 0$

The Lam-Tung relation PRD 18 (1978) 2447:

 $2\nu-(1-\lambda)=0$

should still be valid when we include higher order corrections

Marcia Quaresma (COMPASS & AMBER)

Polarised data (NH3): PRL 99 (2007) 082301 • Transverse Spin Asymmetries E866 p+d at 800 GeV/c Unpolarised data (NH3, Al, W): * NA10 π+W at 194 GeV/c E615 π +W at 252 GeV/c unpolarised Asymmetries 2 2 cross-sections nuclear dependences 0.5 For unpolarised DY: $\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$ -0.5 0.5 Naive LO process: $\lambda = 1$, $\mu = \nu = 0$ -0.5 The Lam-Tung relation PRD 18 (1978) 2447: 2 $2\nu - (1 - \lambda) = 0$ 2v-(1-)) should still be valid when we include -2 higher order corrections 0.5 3.5 p_T (GeV/c)

Polarised data (NH3):

• Transverse Spin Asymmetries

Unpolarised data (NH3, Al, W):

- unpolarised Asymmetries
- cross-sections
- nuclear dependences

Statistical projections from COMPASS:

Polarised data (NH3):

- Transverse Spin Asymmetries Unpolarised data (NH3, Al, W):
- unpolarised Asymmetries
- cross-sections
- nuclear dependences

Fundamental for global analysis:

- For the extraction of the PDFs
- For studies on the transverse momentum dependences

Polarised data (NH3):

- Transverse Spin Asymmetries
- Unpolarised data (NH3, Al, W):
- unpolarised Asymmetries
- cross-sections
- nuclear dependences

How are the parton distributions in nuclei with respect to nucleon?

Expect an impact to the nuclear PDFs extraction at large x_F

Marcia Quaresma (COMPASS & AMBER)

AMBER experiment at CERN

End of COMPASS experiment (last run in 2021) Still many ideas for QCD studies

AMBER physics programme

In the Letter of Intent:

- 1. Hadron physics with standard muon beams
- Hadron physics with standard hadron beams
 Hadron physics with RF-separated beams

Far future - after LS3:

- 1. Kaon spectroscopy
- 2. Kaon structure via the Drell-Yan process
- 3. Study of the gluon distribution in the kaon via prompt-photon production
- 4. Kaon polarizabilities via the Primakoff reactions
- 5. Vector-meson production off nuclei by pion and kaon beams

CERN-SPSC-2019-022 (SPSC-P-360)

1st phase proposal (May 2019):

- 1. Proton-radius measurement using elastic muonproton scattering
- 2. Drell-Yan and Charmonium production using conventional hadron beams (both charges)
- 3. Measurement of antiproton production cross sections for dark matter search

AMBER physics programme

In the Letter of Intent:

proton radius puzzle

- 1. Hadron physics with standard muon beams
- 2. Hadron physics with standard hadron beams
- 3. Hadron physics with RF-separated beams

All ep scattering

CERN-SPSC-2019-022 (SPSC-P-360)

1st phase proposal (May 2019):

1. Proton-radius measurement using elastic muonproton scattering

ep scattering MAMI -		Δ	Bernauer et al. A1 coll. [PRL 105 242001 (2010)]
μp spectroscopy CREMA -	٥		Pohl et al., CREMA coll. [Nature 466 213 (2010)]
scattering data, no MAMI -		Δ	- Zhan et al. [PLB 705 59 (2011)]
CODATA -			- Mohr et al. [Rev. Mod. Phys. 84 1527 (2012)]
μp spectroscopy CREMA -	Ø		- Antognini et al., CREMA coll. [Science 339 417 (2013)]
CODATA -			- Mohr et al. [Rev. Mod. Phys. 88 035009 (2016)]
ep spectroscopy -	o		-Beyer et al. [Science 358 6359 (2017)]
ep spectroscopy -		O	-Fleurbaey et al. [PRL.120 183001 (2018)]
CODATA -	▼		- CODATA (2018)
ep scattering MAMI -		Δ	- Mihovolovic et al. [arXiv:1905.11182 (2019)]
ep spectroscopy -	o		-Bezginov et al. [Science 365 1007 (2019)]
ep scattering JLab -	A	statistical	-Hayan Gao et al. [Nature (2019)]
μp scattering AMBER -		projection	Proposal AMBER [SPSC-P-360 (2019)]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$r_p^{spectroscopy} \approx 0.84 fm$ $r_p^{elastic \ scattering} \approx 0.88 fm$			

Marcia Quaresma (COMPASS & AMBER)

15 February 2020 8/9

AMBER physics programme

In the Letter of Intent:

- 1. Hadron physics with standard muon beams
- 2. Hadron physics with standard hadron beams
- 3. Hadron physics with RF-separated beams

CERN-SPSC-2019-022 (SPSC-P-360)

1st phase proposal (May 2019):

1. Proton-radius measurement using elastic muon-

proton scattering Drell-Yan and Charmoniu

2. Drell-Yan and Charmonium production using conventional hadron beams (with beam PID)

Our group is already involved on the simulations and projections/predictions for the future

 $M_K \sim 490 \ MeV/c^2$

One light valence quark plus one "heavy" valence quark

The nucleon and the meson PDFs are fundamental to understand the hadrons mass budget

Summary

- COMPASS had 2 years of Drell-Yan data-taking in 2015 and in 2018
- Our group is deeply involved in several analyses, both with polarised and unpolarised samples
- These results are of fundamental interest for our understanding of the proton and pion structures
- AMBER is being proposed as a new fixed target experiment at CERN
- Possibility to start measurements in 2022, with a COMPASS-like spectrometer and a new TPC detector as active target, to measure the proton charge radius
- kaon induced Drell-Yan: first ever dedicated measurement of kaon structure

For more details on AMBER experiment see Rita Silva poster today in the poster session 2

