

μ jet jet b-jet **Report of the** Pheno Group @ LIP

Liliana Apolinário

February 14th - 16th 2020

Who are we:

- Group of theoreticians, phenomenologists and experimentalists with focus on:
 - Link between experimental data and theoretical predictions
- Our work:
 - > Develop models, to be tested at experiments
 - Create observables to constrain theoretical description
 - Withdraw meaningful quantities from experimental data

Our team:

Guilherme Milhano Jet Physics, QGP

Liliana Apolinário Jet Physics, QGP

Ricardo Gonçalo SM/BSM [also ATLAS]

Nuno Castro SM/BSM [also ATLAS]

Grigorios Chachamis QCD precision

António Onofre Top/Higgs Physics [also ATLAS]

João Pires **QCD** precision

Pietro Faccioli Quarkonia [also CMS]

Miguel Romão Machine Learning, SM/BSM

L. Apolinário

Ruben Conceição Astroparticles [also Auger/LATTES]

Miguel Fiolhais Top/Higgs [also ATLAS]

Guilherme Guedes PhD :: BSM/DM

Maria Ramos PhD :: BSM/DM

Mariana Araujo PhD :: Quarkonia [also CMS]

João Silva MSc :: Jets in HI // ML

• Graduated at our group in the last two years:

Bruno Silva MSc :: Jets in small nuclei

- External Collaborators:
 - Santiago, R. Santos, K. Rajagopal, U. Wiedemann.

Filipa Peres MSc :: Jets in HI // ML

João Gonçalves MSc :: Jets in HI // ML

F. del Aguila, J. Antonio Aguilar-Saavedra, N. Armesto, J. Casalderrey- Solana, M. Chala, P. Ferreira, A. Ferroglia, C. Lourenço, A. Morais, G. Salam, C.A. Salgado, J.

L. They a

1,"

Willie V.C.

μ jet b-jet Going to the physics...

2018 - 2019

jet

- Goal: Increase theory precision that currently limit physics analysis at the LHC
 - Example: Higgs couplings at the LHC measured today few % uncertainty, but the dominant one is is coming from the theory side.

- Goal: Increase theory precision that currently limit physics analysis at the LHC
 - Example: Higgs couplings at the LHC measured today few % uncertainty, but the dominant one is is coming from the theory side.
- How?
 - Reach theoretical precision LHC phenomenology at NNLO
 - Development of a NNLO fully differential partonlevel generator

- Calculation of the 2nd order pQCD correction
 - Reduction of theory uncertainties

L. Apolinário

[David d'Enterria, JP et al PoS (19)]

[Britzger, JP, et al EPJC (19), A.Gehrmann-De Ridder, JP, et al PRL (19)]]

- Calculation of the 2nd order pQCD correction
 - Reduction of theory uncertainties

L. Apolinário

[David d'Enterria, JP et al PoS (19)]

[Britzger, JP, et al EPJC (19), A.Gehrmann-De Ridder, JP, et al PRL (19)]]

Fast interpolation grid techniques at NNLO in QCD [1906.05303]

Accurate extraction of $\alpha_{\rm S}$

Heavy quarkonium

- Goal: Understand the production of quarkonium bound states (in pp and PbPb)
 - Heavy quark masses \Rightarrow Expansion in powers of (v/c)
- How? Non-relativistc QCD (NRQCD)
 - However, complicated structure masks our understanding of bound states QCD dynamics...
 - Need further phenomenological studies based on measured patterns (scaling laws)

Heavy quarkonium

- Deconstructing NRQCD complexity:
 - terms
 - $J/\Psi, \Psi(2S) \text{ and } Y(nS): {}^{1}S_{0} + {}^{3}S_{1} + {}^{3}P_{I}$
 - ▶ Data indicates: ${}^{1}S_{0} \cong {}^{3}S_{1} + \kappa {}^{3}P_{J}$ with $\kappa \cong 1.8$ (polarisation measurement λ_{θ} at large p_T/M)
 - In either case, zero and constant polarization is the biggest challenge to NRQCD. More precise measurements are needed to reach a decisive

conclusion.

[PF. et al., EPJC (18)] [PF, Lourenço, EPJC (19)]

> quarkonium states are produced as a superposition of many (colour singlet and octet)

Heavy quarkonium

Simple description of quarkonium suppression data, at PbPb collisions (LHC):

Suppression patterns depend exclusively on the binding energy of the states: the more weakly bound states are the most suppressed, as expected in the case of ("sequential") quark gluon plasma screening.

[PhD. Thesis: M, Araujo]

- Goal: Understand QCD sector at extreme conditions
 - Quark-Gluon plasma constitution and dynamics
- How? Hard probes (mostly jets)
 - proton-proton collisions: jets very well understood
 - heavy-ion collisions: jets modified by its interaction with the QGP (?)

- Goal: Understand QCD sector at extreme conditions
 - Quark-Gluon plasma constitution and dynamics
- How? Hard probes (mostly jets)
 - proton-proton collisions: jets very well understood
 - heavy-ion collisions: jets modified by its interaction with the QGP (?)

- Goal: Understand QCD sector at extreme conditions
 - Quark-Gluon plasma constitution and dynamics
- How? Hard probes (mostly jets)
 - proton-proton collisions: jets very well understood
 - heavy-ion collisions: jets modified by its interaction with the QGP (?)

- Goal: Understand QCD sector at extreme conditions
 - Quark-Gluon plasma constitution and dynamics
- How? Hard probes (mostly jets)
 - proton-proton collisions: jets very well understood
 - heavy-ion collisions: jets modified by its interaction with the QGP (?)

- Goal: Understand QCD sector at extreme conditions
 - Quark-Gluon plasma constitution and dynamics
- How? Hard probes (mostly jets)
 - proton-proton collisions: jets very well understood
 - heavy-ion collisions: jets modified by its interaction with the QGP (?)

Expanding medium

- Goal: Understand QCD sector at extreme conditions
 - Quark-Gluon plasma constitution and dynamics
- How? Hard probes (mostly jets)
 - proton-proton collisions: jets very well understood
 - heavy-ion collisions: jets modified by its interaction with the QGP (?)

Initialisation: geometry? 1st QGP interaction? Medium effects on

Expanding medium

New jet observables to allow:

L. Apolinário

 $p_T^{
m HI}$ [GeV]

 $p_T^{\rm vac}$ [GeV]

[Andrews, LA, JGM et al EPJC (18), LA, JGM et al EPJC (18)] [Casalderrey-Solana, JGM, et al, PRC (19), Brewer, JGM et al, PRL (19)]

- New jet observables to allow:
 - Accurate characterisation of the QGP

 - Use observables that are only sensitive to few effects to calibrate models

Disentangle multiple medium-induced effects

- New jet observables to allow:
 - Accurate characterisation of the QGP

[Andrews, LA, JGM et al EPJC (18), LA, JGM et al EPJC (18)] [Casalderrey-Solana, JGM, et al, PRC (19), Brewer, JGM et al, PRL (19)]

[MsC. Thesis: J. Gonçalves, F. Peres]

Disentangle multiple medium-induced effects

- How ML can help us
 - in this quest?

L. Apolinário

[Andrews, LA, JGM et al EPJC (18), LA, JGM et al EPJC (18)] [Casalderrey-Solana, JGM, et al, PRC (19), Brewer, JGM et al, PRL (19)]

[MsC. Thesis: J. Gonçalves, F. Peres]

Disentangle multiple medium-induced effects

- How ML can help us
 - in this quest?

L. Apolinário

[Andrews, LA, JGM et al EPJC (18), LA, JGM et al EPJC (18)] [Casalderrey-Solana, JGM, et al, PRC (19), Brewer, JGM et al, PRL (19)]

[MsC. Thesis: J. Gonçalves, F. Peres]

L. Apolinário

[Andrews, LA, JGM et al EPJC (18), LA, JGM et al EPJC (18)] [Casalderrey-Solana, JGM, et al, PRC (19), Brewer, JGM et al, PRL (19)]

[MsC. Thesis: J. Gonçalves, F. Peres]

What is the lighter system where QGP is still present (measurable amount of energy loss)?

L. Apolinário

[LA, JGM et al PRL (18), FCC Collab. (18)]

Future upgrades:

To be or not to be QGP? (Small systems):

Top quark evidence PbPb $\sqrt{(s_{NN})} = 5.02 \text{ TeV CMS}$: 4.0σ (lepton + b-tagged)

Reconstructed W mass: m_W

Depends on the medium length that the jet is able to "see"

[LA, JGM et al PRL (18), FCC Collab. (18)] [Citron, LA, JGM et al YRep (19)]

[MsC. Thesis: B, Silva]

Future facilities:

Novel QGP probes @ FCC (QGP time structure)

- Goal: Top quark is the strongest coupling to the SM Higgs boson $(Y_t \sim 1)$
 - > Precision measurements of top quark properties are an important test of the SM.
 - Important role for the electroweak symmetry breaking and sensitive probe for physics beyond the SM.

semileptonic decay

dileptonic decay

- Goal: Top quark is the strongest coupling to the SM Higgs boson $(Y_t \sim 1)$
 - > Precision measurements of top quark properties are an important test of the SM.
 - Important role for the electroweak symmetry breaking and sensitive probe for physics beyond the SM.
- How?
 - Find new observables to test the CP nature of the coupling in ttH events at the LHC with best precision
 - Look for anomalous couplings in the top-W coupling

semileptonic decay

dileptonic decay

- the top-quark Yukawa coupling
 - Role of ttH centre-of-mass system

[PhD.. S. Santos (see Poster!!!)]

New possibilities to directly measure a hypothetical CP-odd (pseudoscalar) component in

the top-quark Yukawa coupling

L. Apolinário

[PhD.. S. Santos (see Poster!!!)]

New possibilities to directly measure a hypothetical CP-odd (pseudoscalar) component in

Future upgrades:

The top quark couplings to the W boson:

> Allowed regions of the new couplings (based on an extrapolation of the results to the HL-LHC phase) [1902.04070]

Table 50: Allowed regions for anomalous couplings.

HL-LHC	$g_{ m R}$	$g_{ m L}$	$V_{ m R}$
Allowed Region (Re)	[-0.05, 0.02]	[-0.17, 0.19]	[-0.28, 0.32]
Allowed Region (Im)	[-0.11, 0.10]	[-0.19, 0.18]	[-0.30, 0.30]

Gains from run 2 to the HL-LHC exist but... new data analysis strategies to improve sensitivity need to be considered

LIP Jornadas 2020

(_10.; 10.;

Composite Higgs models

- **BSM** Physics to address hierarchy problem:
 - Reach of the LHC in ongoing searches and HL-LHC

[M. Chala, MR, M. Spannowsky, EPJC (19)]

[PhD. Thesis: M. Ramos; G. Guedes (see posters!!)]

Composite Higgs models

- BSM Physics to address hierarchy problem:
 - Reach of the LHC in ongoing searches and HL-LHC
 - Reach of LISA to test the parameter space region of the scalar potential
 - Signal: production of gravitacional waves
- More info: next talk by Maria Ramos

For the future...

2020 - 2021

jet

μ

jet

b-jet

> Strengthen efforts on existing activities and explore more synergies within the group;

- > Strengthen efforts on existing activities and explore more synergies within the group;
- > Seek to broaden into areas of strategic and topical importance for the group and LIP's activities:
 - Need sustainable growth of the group (full-time dedication researchers)

- > Strengthen efforts on existing activities and explore more synergies within the group;
- > Seek to broaden into areas of strategic and topical importance for the group and LIP's activities:
 - Need sustainable growth of the group (full-time dedication researchers)
- Consolidate the group as a Phenomenology centre of national and international relevance, with a leading role during the high-luminosity phase of the LHC:
 - Continue to propose innovative analyses and data interpretation;
 - Maintain existing collaborations and foster new partnerships.

- Strengthen efforts on existing activities and explore more synergies within the group;
- Seek to broaden into areas of strategic and topical importance for the group and LIP's activities:
 - Need sustainable growth of the group (full-time dedication researchers)
- Consolidate the group as a Phenomenology centre of national and international relevance, with a leading role during the high-luminosity phase of the LHC:
 - Continue to propose innovative analyses and data interpretation;
 - > Maintain existing collaborations and foster new partnerships.

Thank you!

Acknowledgments

L. Apolinário

CERN/FIS-PAR/0022/2017 CERN/FIS-PAR/0015/2017 CERN/FIS-PAR/0008/2017 CERN/FIS-PAR/0006/2017

Universidade do Minho Escola de Ciências

