Southern Wide-field Gamma-ray Observatory

Jornadas LIP, Braga, February 15th 2020

Ruben Conceição

LIJDUA

(Very) high-energy gamma-rays

 Photons extremely energetic
 ♦ From a few GeV to 100 TeV Point to production source
 Travel long distances Probes for the most violent processes known in the Universe Allows to perform strong tests to fundamental physics ______A

СТА

HAWC

HESS

ARGO

Built IACT Built Array Planned IACT In construction Array

High-energy gamma-ray detection techniques

Built IACT **Built Array** O Planned IACT In construction Array

Complementary to the powerful Cherenkov Telescope Array project

- Design of a hybrid detector able to cover the sensitivity gap between satellite and ground-base experiments
 - Water Cherenkov Detector
 - ♦ Resistive Plate Chamber
- Collaboration between Brazil, Czech Republic, Italy, Portugal
- https://www.lip.pt/experiments/lattes

LATTES

Astroparticle physics 99 (2018) 34-42

More projects in the world besides LATTES

SGSO

HAWC

STACEX

ALTO

Towards convergence

SGSO

LATTES

20-22 May 2019 LIP Europe/Lisbon timezone

Overview

Timetable

Contribution List

Registration

Participant List

Venue & Travel Information

Workshop Dinner

Accommodation

Contact ruben@lip.pt

bernardo@lip.pt

This meeting aims to be a further step towards the construction of one wide Field-of-View Gamma Ray Observatory in the Southern Hemisphere able to cover the energy range of 100 GeV to 100 TeV.

It follows the meeting held in Heidelberg last October. Both the scientific case and the different proposed designs will be reviewed and discussed.

Starts 20 May 2019, 13:00 Ends 22 May 2019, 15:00 Europe/Lisbon

Bernardo Tomé **Fabian Schussler** Harm Schoorlemme Michele Doro Ruben Lopez-Coto Rúben Conceição

Registration You are registered for this event.

Meeting in Lisbon on May 2019 www.lip.pt/GammaRaySouthernObservatory

HAWC

STACEX

Wide field-of-view gamma-ray observatory in the Southern hemisphere

0 Lisbon, Portugal

There are no materials yet. D,

 $\boldsymbol{\rho}$

ALTO

SWGO collaboration

3-year R&D project to design and plan the next generation wide field-of-view gamma-ray able to survey and monitor the Southern sky

- Southern Wide-field Gamma-ray Observatory
 - ♦ Formed at July 1st 2019
 - the second seco
 - ♦ 44 institutes
 - A More than 100 scientists

The scientific goal

swgo.org

SWGO collaboration

3-year R&D project to design and plan the next generation wide field-of-view gamma-ray able to survey and monitor the Southern sky

Countries in SWGO

Institutes

Argentina*, Brazil, Czech Republic, Germany*, Italy, Mexico, Peru, Portugal, United Kingdom, United States*

Supporting scientists

Australia, Chile, France, Japan, Slovenia

*also supporting scientists

The collaboration is organized in five major working groups:

SWGO collaboration

3-year R&D project to design and plan the next generation wide field-of-view gamma-ray able to survey and monitor the Southern sky

Countries in SWGO

Institutes

Argentina*, Brazil, Czech Republic, Germany*, Italy, Mexico, Peru, Portugal, United Kingdom, United States*

Supporting scientists

Australia, Chile, France, Japan, Slovenia

*also supporting scientists

The collaboration is organized in five major working groups:

Site selection

Simulation and Analysis

Detector R&D

The challenge

80 000 m² compact array

 \bigcirc

 \square

Build a huge array at an altitude of **5000 m** based on the **Water Cherenkov detection** technology

 \bigcirc

220000m² sparse array

The station unit

80 000 m² compact array

 \bigcirc

 \square

Build a huge array at an altitude of **5000 m** based on the **Water Cherenkov detection** technology

220000m² sparse array

Explore a detector concept with a **smaller height** combined with a **matrix of photo** detectors at the bottom Install **RPCs** in a small portion of the array to create **hodoscopes**

0

0

 \bigcirc

 \bigcirc

 \square

 \Box

sub-TeV energies

Ruben Conceição

Highlights of activities at LIP

Simulation and Analysis

- Develop a common simulation framework
- with a matrix of photo-detector
 - ♦ Use of SiPM

A Novel analysis strategies to improve:

Primary energy reconstruction

Gamma/hadron discrimination

Highlights of activities at LIP

Enhanced gamma/hadron discrimination at SWGO

- Use Machine Learning algorithms
 Analysis of shower patterns at the ground
 - Joint work with the computer
 science group at DEI Coimbra
 - Identify the presence of muons at WCD
 - university (physics and computing departments)

Improvement of a factor of 2 in the sensitivity at 1 TeV

IEEE Access, vol. 7, pp. 110531-110540, 2019

Enhanced gamma/hadron discrimination at SWGO

- Use Machine Learning algorithms
 - Analysis of shower patterns at the ground
 - science group at DEI Coimbra
 - Identify the presence of muons at WCD
 - Joint work with the Granada
 university (physics and computing departments)

All analyses are based in simulations

It is crucial to perform calibration with real data

RPC hodoscopes would be able to provide such data

Highlights of activities at LIP

Detector R&D

- Prototype **RPCs** able to perform at highaltitude (low pressure)
 - Hypobaric chamber built to perform
 LAB studies
- Develop thermal simulations to investigate behaviour of WCD and propose insulation strategies

Outreach

- Installation of a muon hodoscope at the Lousal Mine
- Outreach talks at Lousal Ciência Viva

Summary

SWGO R&D phase ends in November 2022

- Physics case
- Detector design
- ♦ Site
- ♦ LIP plays a major role in:
 - Explore sub-TeV energy region
 - Science and detector design
 - Explore new analysis methods
 - A ML and complementary detector core
 A

Acknowledgements

UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regional

Backup slides

Possible sites

WIMP annihilation

(Galactic Centre/Halo observations @ VHE)

• New generation of instruments reaches the critical sensitivity • Thermal relic WIMP accessible over a very wide mass range

CTA and SWGO: complementary

Detection Area

• Short timescales: If CTA can get there \rightarrow more sensitivity • Steady sources: If background can be suppressed \rightarrow more sensitivity than CTA over several years

Annual Exposure

Reaching the highest energies

Gamma or Hadron?

Using the same data set

♦ Use "classical" discrimination variables Steepness and bumpiness of LDF - Compactness Cluster far away from shower core - **S40** ♦ Astropart.Phys. 99 (2018) 34-42 Similar results published by HAWC in Astrophys.J. 843 (2017) no.1, 39

- ♦ Use Machine Learning (ML) techniques
 - ♦ Fully explore patterns at the ground

Evolution of convolutional neural Evolution Second Secon networks

https://cdv.dei.uc.pt/denser/

Exploring the pattern of showers at the ground

IEEE Access, vol. 7, pp. 110531-110540, 2019

Gamma/hadron discrimination

27

20

10

0

Elevation [km]

Look for difference in the patterns at the ground

Look for muons or/ and high-energy sub-showers

Gamma/hadron discrimination

Look for difference in the patterns at the ground

Look for muons or/ and high-energy subshowers

WCD 1.5 x 1.5 x 1 m³

Is there a muon in the station?

♦ SiPM total measured signal

Asymmetry between SiPM

- Use a DNN to estimate the probability of a station to contain a **muon**
 - Train with single muons in station
 - A Needs to be optimized but first results are
 A encouraging
- ♦ On-going work
 - a new master student joined this project
 very recently

WCD station

SiPM total recorded signal

Challenge identify the muon with nearly no false positives

Preliminary results

 $T_{e.m.} \sim 99.94\% - T_{\mu} \sim 29\%$

Future Use a CNN to exploit the complex features of each individual SiPM signal time trace

S_μ - **〈** S_{e.m.} **〉**

Event-by-event level

A road towards an enhanced gamma/hadron discrimination

Low energy showers

ground with a CNN

High energy showers

\ many muons \ uniform shower footprint

Assess WCD signal with a DNN to find muons

A road towards an enhanced gamma/hadron discrimination

High energy showers

\ uniform shower footprint

Assess WCD signal with a DNN to find muons

Activities @ LIP

- Science capabilities
 - Studies on the sensitivity to:
 - Transient astrophysical phenomena
 - Explore hadronic interactions the
 A sector of the sector of forward region
 - Dark matter annihilation
 - Detect Neutrino physics
 - ♦ BSM physics

Neutron Stars Merger

tau-neutrino

