

Neutrino Physics @ LIP

Nuno Barros, on behalf of the neutrino group

Jornadas LIP, Braga, Feb 2020

What do we know about neutrinos?

- Have no charge do not participate in electromagnetism
 - Could be their own anti-particles
- Come in three flavors
- Are very light
 - Thought to be massless
 - Neutrino oscillations imply massive neutrinos
- Interact very weakly

Where neutrinos come from?

What haven't we learned yet about neutrinos

- Is there CP violation in the lepton sector?
- Which mass hierarchy is correct?
- What are the precise values of the neutrino mixing parameters?

- What is the absolute mass scale?
- Are neutrinos Majorana or Dirac particles?

DUNE

Massive Majorana neutrinos

- Neutrinos could their own antiparticles, with only chirality/helicity distinguishing them (Majorana)
- IF Heavy Majorana neutrinos exist, a "see-saw" mechanism can explain the smallness of masses
 - Dirac term m_D ~ 100 GeV (scale of W, Z, Higgs bosons)
 - If $m_N \sim 10^{14} 10^{15} \text{ GeV}$ (GUT scale)
 - Then m_v ~ 0.01 0.1 eV (expected from oscillations/limits)
 - Coincidence?
- IF neutrinos are Majorana fermions AND they violate CP they could help explain matter-antimatter asymmetry in the Universe —> leptogenesis

 $m_v \cdot m_N \approx m_D^2$

The neutrino group@LIP

LIP Responsibilities

- SNO+
 - Optical Calibration Conveners (N. Barros, J. Maneira)
 - Water-phase Analysis Coordinator (N. Barros)
 - Backgrounds WG Coordinator (V. Lozza)
 - Partial-Fill Analysis Coordinator (V. Lozza)
 - Anti-neutrino WG Coordinator (S. Andringa)
- **DUNE/ProtoDUNE**
 - ProtoDUNE Trigger Coordinator (N. Barros)
 - Calibration & Cryo-Instrumentation Consortium Convener (J. Maneira)

- High sensitivity potential for leptonic CP violation
- Identify the neutrino mass hierarchy •
- Precision oscillation physics and test of 3-flavor • oscillations
- **Proton Decay**

E~O(few GeV)

• Target SUSY-favored mode p —> K⁺ v

- SN burst physics and astrophysics •
 - Galactic core collapse supernova, unique • sensitivity to v_e

0 0

1 2 3

4

E~O(10 MeV)

5

6

7 8

E_v (GeV)

- **Atmospheric Neutrinos** lacksquare
- Solar neutrinos (similar approach as SN) •
- **Neutrino Interaction Physics (Near Detector)** •

DUNE Far Detector: LAr TPCs

- Major Challenges:
 - Event reconstruction (monolithic detector)
 - Scaling of technology

- Technology advantages:
 - 3D imaging (use image processing technology for event classification)
 - Full event topology

ProtoDUNE cryostats @ CERN

- Use nearly identical cryostats for single and dual phase protoDUNE
 - Serve as prototype for the 10kt cryostats
 - First run about to complete
 - Second (last) run planned for late 2021

Sandbox to test all components of the DUNE far detectors

DUNE Activities at LIP

End Wall

ield Ca

3.6m

3.6r

- **Detector Calibration (DUNE and ProtoDUNE)**
 - Ionisation laser system
 - Pulsed Neutron Source
- ProtoDUNE
 - Trigger/DAQ
 - Electron Lifetime Measurements

6 m

6.9 n

APA #2

APA #3

Ionisation laser

LIP activities in laser calibration

Z (beam) coordinate [cm]

solves low coverage due to FC shadows.

ARTIE : Argon Resonance Transmission Interaction Experiment

- Searching for an anti-resonance in the n+40Ar cross section using a neutron beam at LANL
 - Critical for assessment of n-backgrounds
 - Dominant background for low energy program (solar, SN)
 - Necessary measurement to validate need for external neutron calibration source

Neutrons

protoDUNE-DP argon purity

- Periodic measurement of argon purity using internal monitor
 - Electron lifetime proportional to ratio of anode and cathode charge amplitude
- Very important assessment of detector state while filling
- Electron lifetime has been consistently above 7 ms and slowly increasing
 - ~2x full volume drift time

Plans over next year

- Test run of DD neutron generator in protoDUNE-SP
- Complete design of laser calibration system to deploy in protoDUNE-SP
 - Collaborate with LANL in construction of first prototypes
- Design DAQ and SC interface for calibration in PD-SP
- Increase analysis efforts in PD data
 - Analysis of cosmic ray data
 - Understand the detector response with well known event topologies
 - Characterisation of K events from beam
 - Trademark signal for DUNE nucleon decay searches
 - Sensitivity studies and calibration MC
 - Optimisation of calibration analyses, improve sensitivity

(partially filled with scintillator)

SNO+

SNO+ physics program ...780 ton scale low background calorimeter

- Main objective:
 - Search for $0\nu\beta\beta$ in ¹³⁰Te
- Other topics of interest
 - Solar neutrinos
 - Nucleon decay
 - Supernova neutrinos
 - Reactor and geo-antineutrinos

SNO+ Activities at LIP

- **Detector Calibration**
 - Optical Calibration
 - AmBe
 - Low energy gamma
- Data Quality
- **Backgrounds**
 - Water phase
 - Partial fill
- <u>Physics Analyses</u>
 - Anti-neutrinos
 - Solar neutrinos
 - ββ0ν decay

SNO+ calibration hardware@SNOLAB

- Mechanism to deploy sources in scintillator
- 2 units built at LIP-Coimbra, now at SNOLAB
- 1st one now cleaned and sent underground (Stefan Nae and Ana Sofia Inácio worked on this)

SNO+ timeline

Scintillator/water Interface

Filling with scintillator, from top 82 tons in, ~10% (photo 43 tons) Monitoring quality as we fill

Scintillator Optical Properties within objectives

Interface visible in event reconstruction

Continuous monitoring of internal backgrounds

High levels of radon (as expected)

No visible Th chains

Internal backgrounds in DBD ROI below expectation

PMT hits distribution using BiPo214 time window ¹⁰ ¹⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰⁰ ¹¹⁰⁰⁰ ¹⁰⁰⁰ ¹⁰⁰

Results from the optical calibration

More accurate water attenuation

More accurate water attenuation

Characterization of the PMTs to high angles of incidence (in SNO only able up to 45 degrees)

See poster by A. Inácio for more details

The best understood detector response (so far)

- Cross-check with another calibration source (16N)
- Other work behind the scenes: scattering measurements, PMT collection efficiency,...

gamma

Tagged using the β

Tune reconstruction

Data/MC agreement to better than 1%

Water-phase results

• Solar neutrino analysis

Phys. Rev. D 99, 012012 (2019)

- Use only direction to Sun (no energy)
- Invisible nucleon decay

Phys. Rev D 99, 032008 (2019)

 Re-analysis with extended low background dataset ongoing (doubling the statistics)

External backgrounds

Gamma background from water buffer, AV and PMTs

Measurement/Expectation Ratio		
	Above equator	Below equator
AV+Ropes	$2.2 \pm 0.08^{+2.4}_{-1.9}$	$1.3 \pm 0.08^{+1.0}_{-0.9}$
Water buffer	$0.6 \pm 0.06^{+1.9}_{-0.6}$	$1.0 \pm 0.07^{+3.3}_{-1.0}$
PMT	$1.2 \pm 0.02^{+1.1}_{-0.5}$	$1.2 \pm 0.02^{+1.1}_{-0.5}$

Major milestone for 0vββ search

Neutron capture in water

- Use ²⁴¹Am⁹Be source (untagged)
 - Coincidence of 4.4 MeV gamma and neutron (emission of 2.2 MeV gamma upon capture)
- Calibrate lower energies
- Opens the door to search for reactor neutrinos in water (ongoing analysis)

What comes next?

- Short commissioning run with pure scintillator (mid-2020)
 - Characterize internal backgrounds
 - Commission calibrations
 - Test of calibration and reconstruction tools
 - Physics searches:
 - Low energy solar neutrinos (lowest ¹¹C background)
 - Geo- and reactor antineutrinos
 - Could check discrepancy reactor/solar with short running time
- Load with Te
 - 3 ton of natural Te : 0.5% loading (~1330 kg ¹³⁰Te)
 - ton-scale experiment

Region may be dominated by ²¹⁰Bi from leaching. To be checked.

Antineutrino energy [MeV]

Comparison with other experiments

Lower $m_{\beta\beta}$ is better

Summary

- After decades of interesting discoveries, neutrinos remain one of the least understood elementary particles
 - They oscillate (and we know how)
 - They are massive (but we don't know how much)
- The LIP group is heavily involved in key experiments to answer all these questions
 - CP violation with **DUNE**
 - $0\nu\beta\beta$ with **SNO+**
- The group is involved in various aspects of the experiments:
 - Calibration (DUNE & SNO+)
 - DAQ (DUNE)
 - Backgrounds (SNO+)
 - Data Analysis (DUNE & SNO+)