
Titans clash: the top quark meets Pb ions

Muon Solene

P. Ferreira da Silva (CERN) Thursday, 5th December 2019 Seminários do LIP

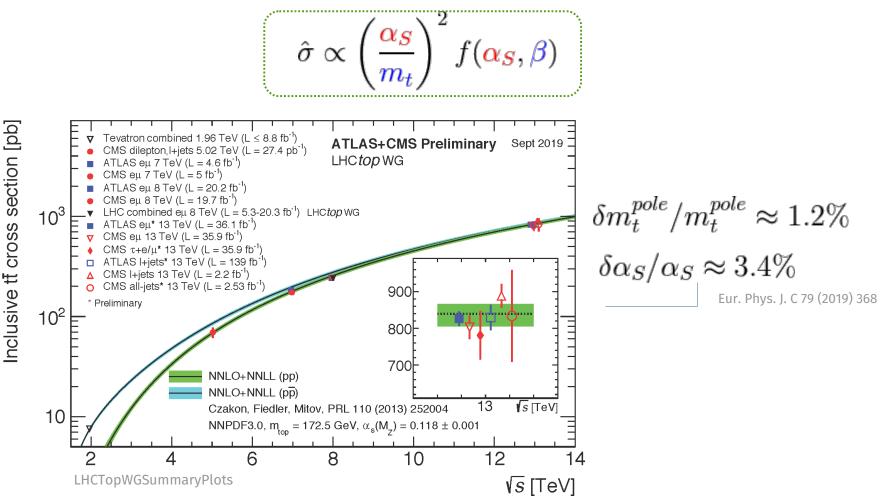
F. Goya, Saturno devorando a su hijo

Introduction

(re-) establishing the pp reference

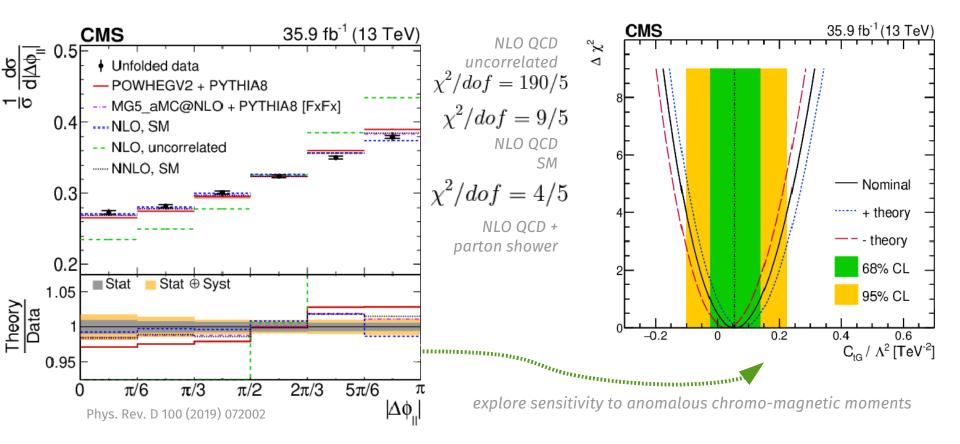
First observation in pPb collisions

First evidence in PbPb collisions


Conclusions*

* with a reprise of Goya's "Saturn devouring his son"

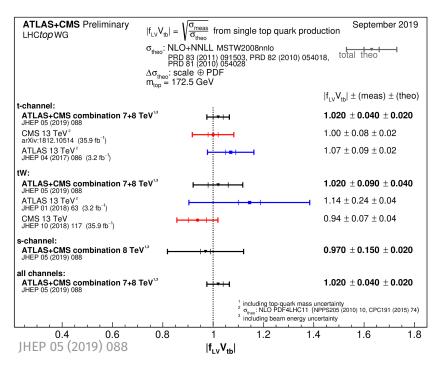
Introduction

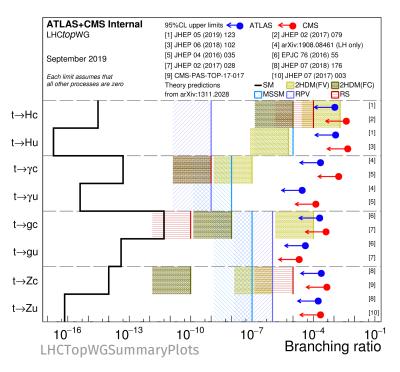

Top quarks still interesting 25 years after

- At the LHC top quarks are predominantly produced by strong interactions
 - cross section is sensitive to mass and strong-coupling constant

Top quarks still interesting 25 years after

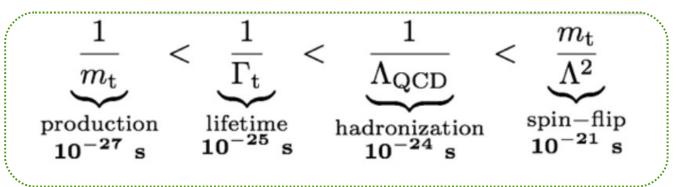
- At the LHC top quarks are predominantly produced by strong interactions
 - cross section is sensitive to mass and strong-coupling constant
 - differential distributions are sensitive to width, EW corrections, BSM couplings

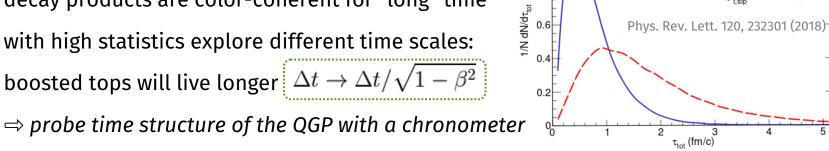



Overall status of top quark physics at the LHC

6

In general data are in good agreement with NNLO QCD+NLO EW


- good precision reached in V_{tb} (4%), α_s (3%), and m_t (0.3%)
- up to $d^3\sigma/dX$ measured! exploring production, decay, resolved and boosted regimes
- rich programme of measuring rarer processes
 (associated productions with heavy flavours, bosons, other top quarks,...)
- searches for FCNCs, anomalous couplings, charge asymmetry, CP violation, ...



Top quarks as (the) hard(est) probes in heavy-ions

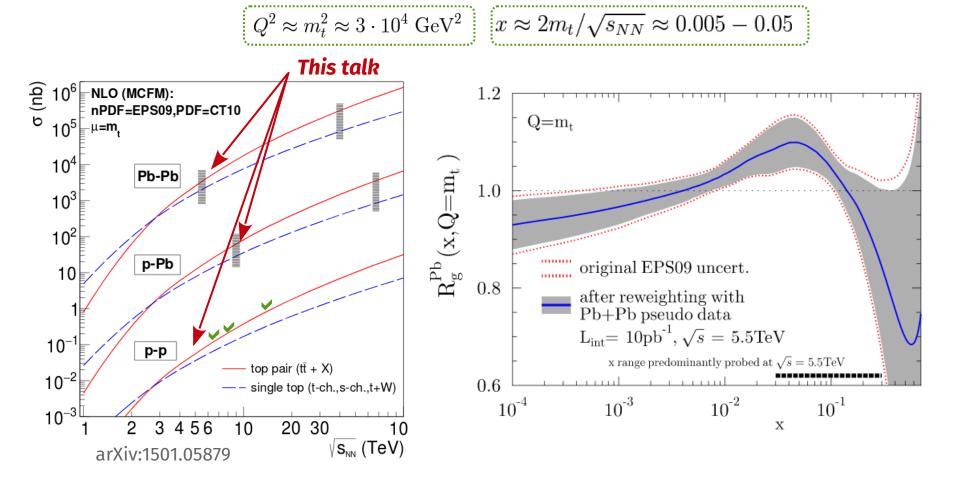
Top quarks have typical time scales which are smaller than QCD time scales

- most top quarks will promptly decay after production
- decay products are color-coherent for "long" time
- with high statistics explore different time scales: boosted tops will live longer $\Delta t \rightarrow \Delta t / \sqrt{1 - \beta^2}$

0.8

W⁺W b b

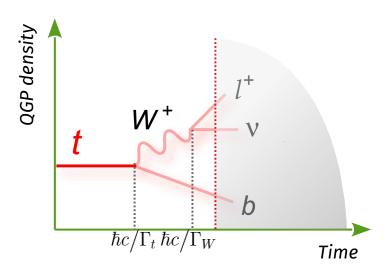
LHC 5.5 TeV (inclusive)


FCC 39 TeV ($p_{t top}^{reco} > 400 \text{ GeV}$)

Given the precision reached in top quark physics: potential to be a reference

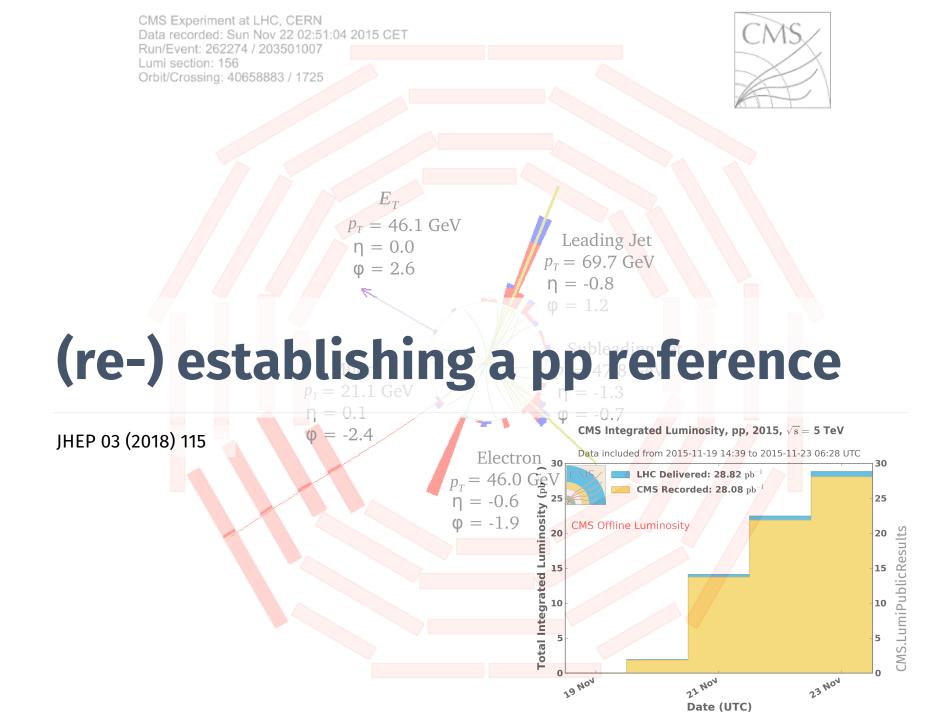
- experimentally view it's used already for tagging efficiencies, jet energy scale
- use it as standard model candle in (large statistics) heavy ion collisions

From pp to PbPb


- tt pairs mostly produced through gg fusion
 - with respect to pp, production cross section enhanced by Aⁿ (n=#Pb nucleus)
 - positive (yet small) anti-shadowing region in nuclear PDFs, poorly known

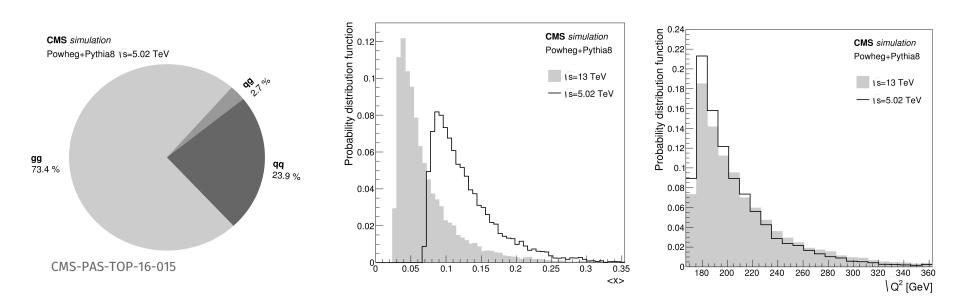
Experimental challenges

Top quark carries colour

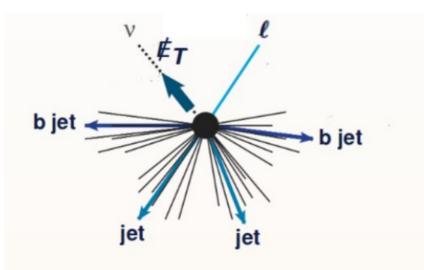

- $\hbar c / \Gamma_t >> c \tau_{QGP} \Rightarrow$ decays before QGP is formed
- decay products pass through medium:
 - charged leptons are unaffected
 - jets may probe it (quenching effects may occur, maybe surpressed due to color coherence, and EWK origin)

 \Rightarrow avoid entangling different effects in a first measurement

• pp reference, pPb and PbPb runs have low integrated luminosity

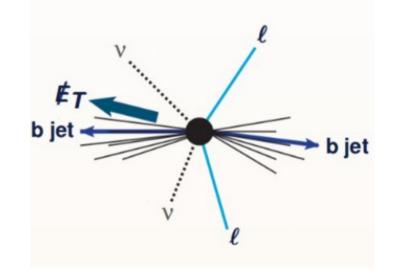

- hard to calibrate precisely jet energy scale, b-tagging efficiencies
- care with selection of top signals from W+jets, Drell-Yan and multijet backgrounds
 ⇒ need "aggressive" discrimination and "in-situ" calibrations whenever possible

Measuring σ (tt) at s^{1/2}=5.02 TeV


• Why should we bother in the first place?

- experimentally:
 - same nucleon-nucleon c.o.m. energy as PbPb (no rescaling needed)
 - employ selections/variables which could be interesting in PbPb
 - never done before (bridge the gap between Tevatron and LHC)
- theory:
 - lower s^{1/2} pushes PDFs to higher x at the same Q², enhanced qq' contribution (with more statistics could be competitive for α_s and m_t^{pole} , charge asymm.)

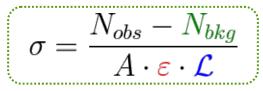
Measurement strategy


- Combine final states with at least one charged lepton
 - high combined BR (35%) and S/B (50-95%) with simple selections

lepton+jets

- =1 e (μ) p₁>40 (25) GeV $|\eta|$ <2.1 I_{rel}<15%
- >=4 jets p₁>30 GeV |η|<2.4

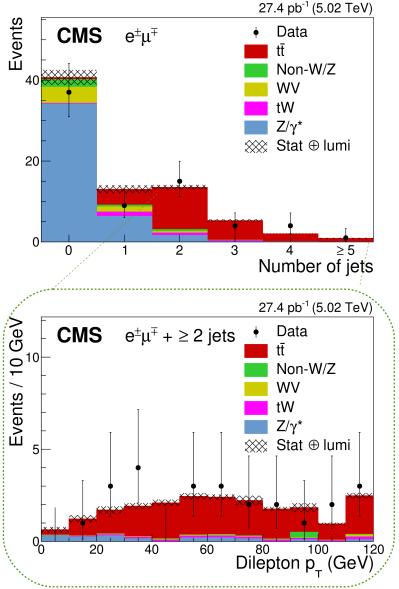
b-tagging (ϵ_{b} ~70% ϵ_{g} ~1%) used in counting and to identify jets from W→qq' decays

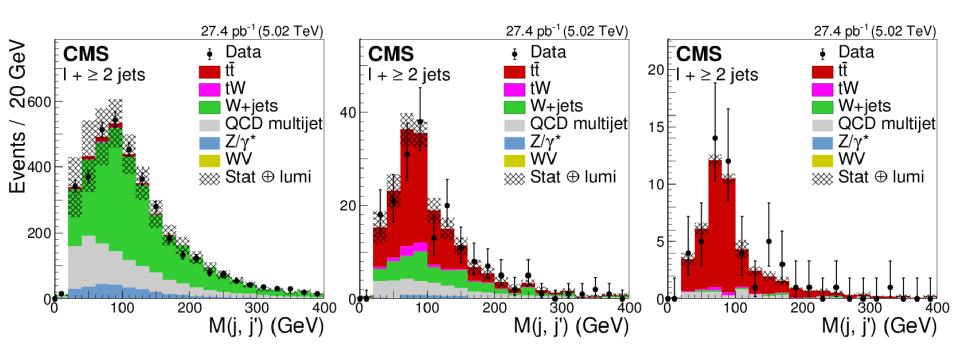


dileptons

1e1µ or 2µ p_T>20 (18) GeV for e(µ) reject if m(ll)<20 GeV ≥2 jets p_T>25 GeV |η|<3 µµ-specific |m(ll)-91|>15 GeV + $E_T^{miss}>35$ GeV

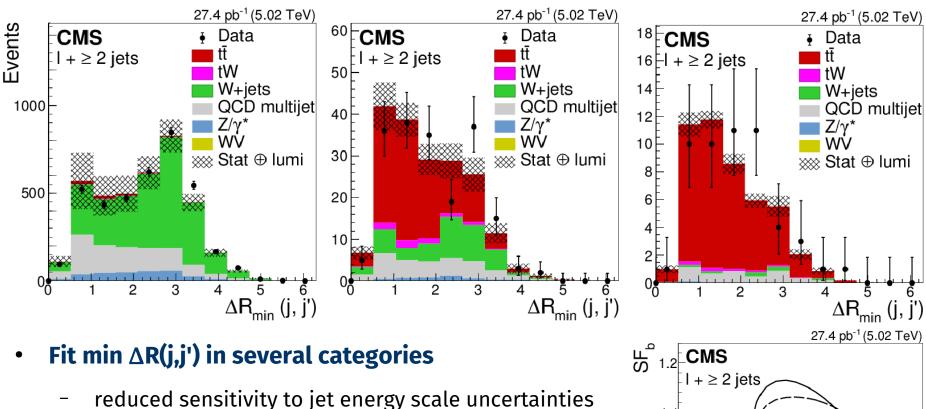
Dilepton


• Apply simple cut and count


- Residual backgrounds mostly from data
 - DY yields scaled using Z peak (extrapolation to outside peak)
 - W+jets estimated from same-sign dileptons
 - both predictions compatible with simulation ~20-90% unc. \Rightarrow dσ/σ~3%
- Trigger/selection eff. measured with $Z \rightarrow II$
 - tag-and-probe method limited by statistics
 - ~1-3% uncertainty per lepton
- Luminosity measurement known to 2.3%

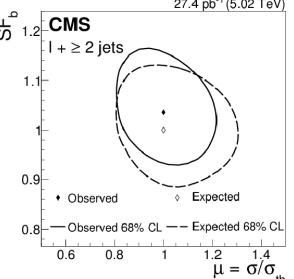
 $\sigma_{
m t\bar{t}} = 77 \pm 19 \, (
m stat) \pm 4 \, (
m syst) \pm 2 \, (
m lumi) \,
m pb$

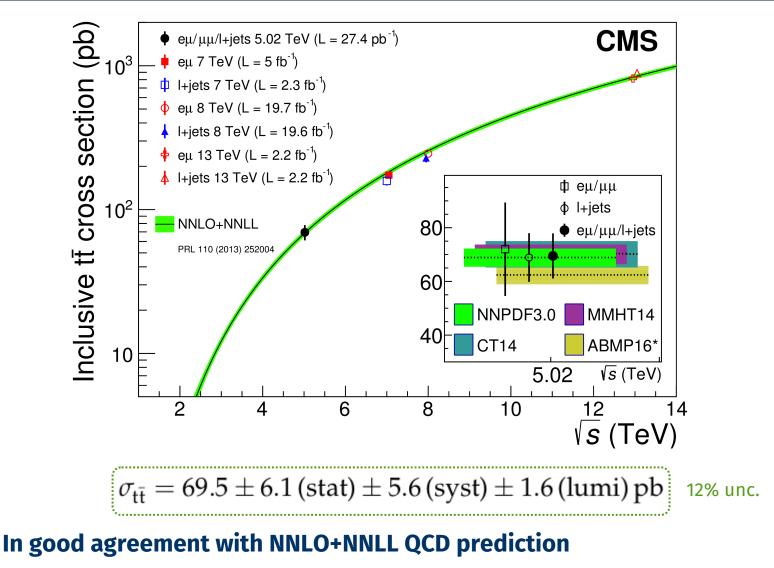
25% unc.



Lepton+jets I

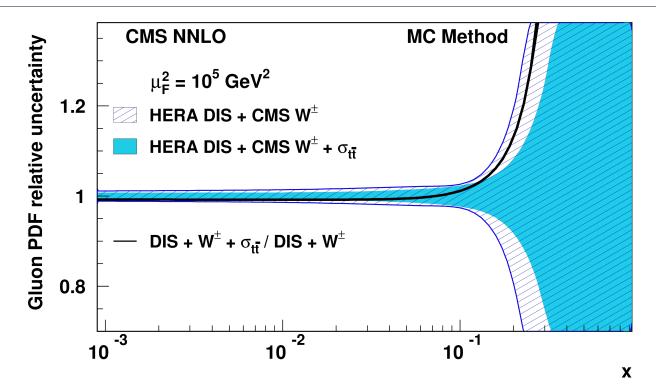
- Profit from W → qq' resonance only present in tt decays
 - Non-b-tagged jets closer minimize $\Delta R(j,j')$ (keep this in mind later for pPb)
- Categorize the events according number of b-jets to separate signal
 - W+jets modelled from simulation (MG5_aMC@NLO FxFx)
 - QCD modelled from inverting the μ isolation or e-id criteria


Lepton+jets II


- reduced sensitivity to jet energy seate uncertain
- fairly robust against theory uncertainties
- Combined extraction of σ (tt) and b-tag efficiency \rightarrow 13% unc.

 $\sigma_{\mathrm{t\bar{t}}} = 68.9 \pm 6.5 \,\mathrm{(stat)} \pm 6.1 \,\mathrm{(syst)} \pm 1.6 \,\mathrm{(lumi)} \,\mathrm{pb}$

main syst. uncertainties: ε_{b} , QCD and W+jets estimations



Combined result

 $\sigma^{\text{NNLO}} = 68.9 \, {}^{+1.9}_{-2.3} \, (\text{scale}) \pm 2.3 \, (\text{PDF}) \, {}^{+1.4}_{-1.0} \, (\alpha_s) \, \text{pb}$ (NNPDF3.0, α_s =0.118, m_t=172.5 GeV)

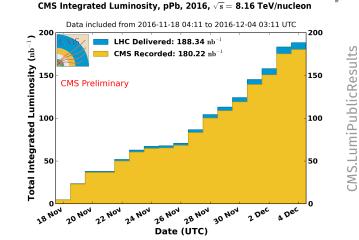
Impact on PDFs

- Nice complementarity of low s^{1/2} tt measurements, constraint PDF by
 - assuming a functional form for the PDFs
 - using DGLAP evolution at NNLO

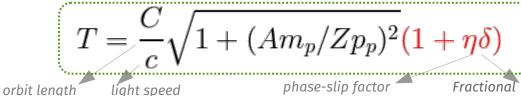
 $xg(x) = A_{g} x_{g}^{B_{g}} (1-x)^{C_{g}} (1+D_{g}x)$

QCD sum rules Low x high-x additional dof

- combine with HERA and CMS W asymmetry using xFitter
- Modest improvement at high x still limited by large statistical uncertainty...

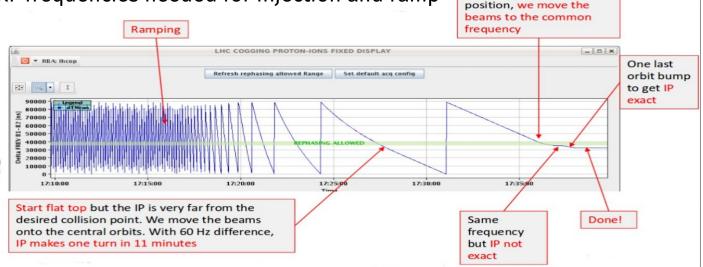

... to be topped up with 10x more data from low pileup 2017 run :)

CMS Experiment at the LHC, CERN Data recorded: 2016-Nov-19 06:44:18.053352 GMT Run / Event / LS: 285517 / 2067670785 / 1459

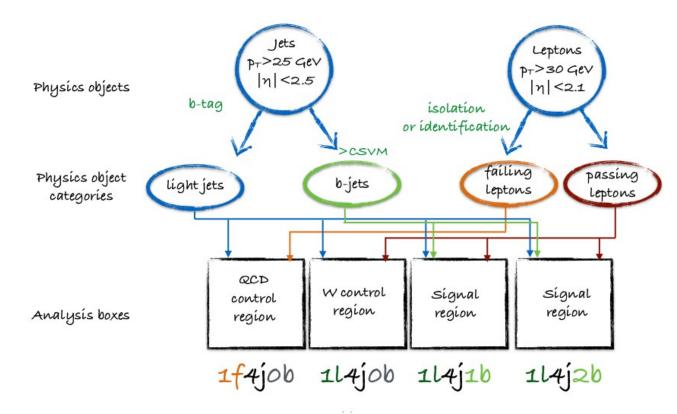

pPb observation

Phys. Rev. Lett. 119, 242001 (2017)

Colliding different species at the LHC

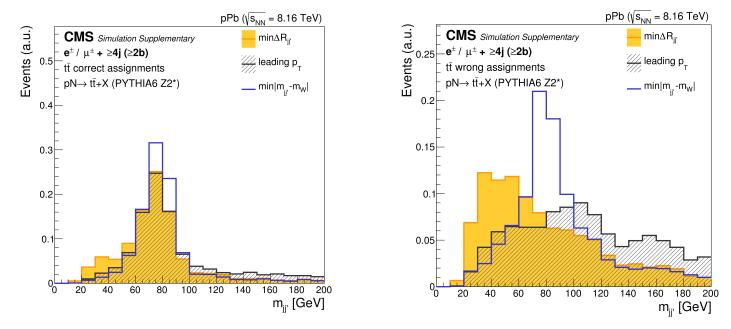

- Two-in-one design of the LHC magnets requires equal magnetic rigidity $p_{Pb}=Zp_{D}$
- Different revolution time needs to be compensated by adjusting f_{RF}

momentum deviation


IP close to desired

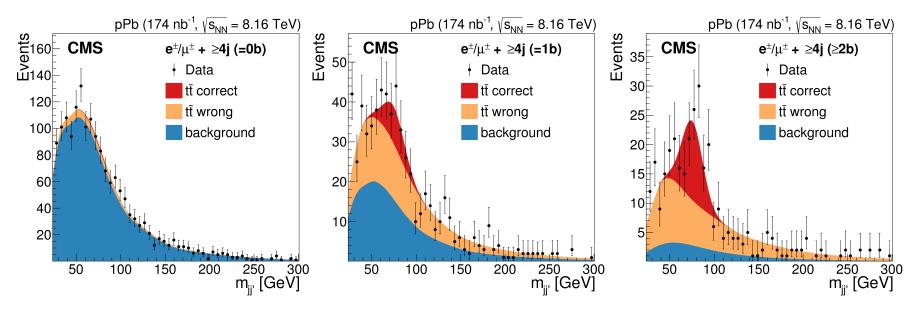
- beam *cogging* needed at the LHC (different operation from RHIC)
- as reference: at injection time p make 8 more turns than Pb
- different RF frequencies needed for injection and ramp

Searching for pPb \rightarrow tt: analysis strategy₂₀


- pPb collisions are relatively "clean", just imbalanced in pseudo-rapidity
- Use highest BR and high S/B channel (l+jets) to establish tt
 - Pair non b-tagged jets based minimizing ∆R(jj')
 - Fit resonant W \rightarrow qq' to extract σ (tt) with minimal reliance on theory/MC

Signal and background modelling

• Signal has resonant and non-resonant components


- pairing strategy is instrumental in preserving main characteristics
- also contributes to avoid shaping the background

• Backgrounds are determined from data

- Multijets-like background modelled by inverting lepton requirements
- W+jets-like modelled with Landau-like spectrum (MC-inspired)
 (Fine-adjustement of parameters in-situ from non-b-tagged control region)

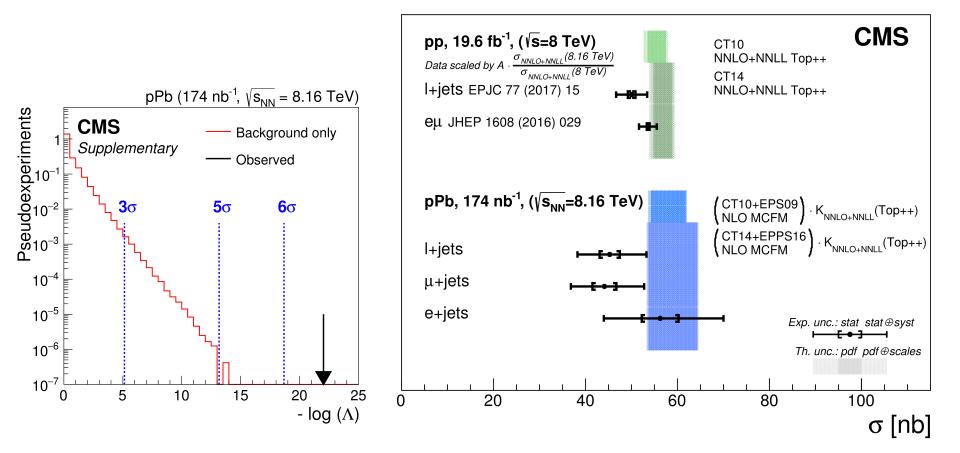
Measuring $W \rightarrow qq'$ (in pPb conditions)

22

ε.~0.595

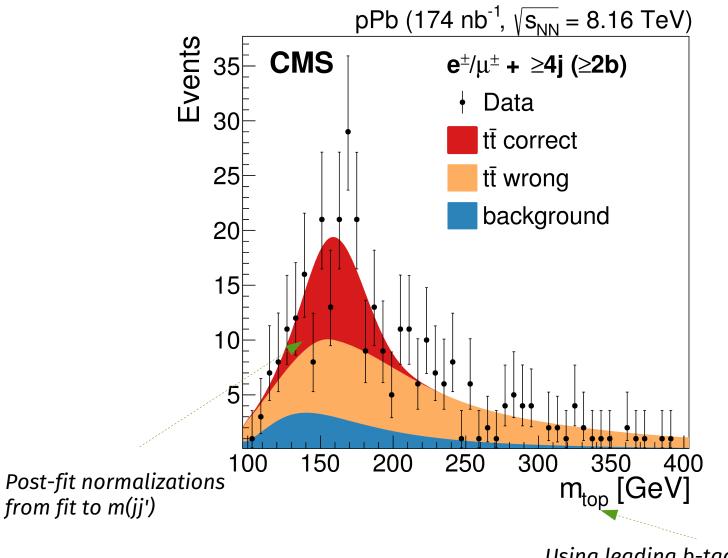
 $N_0(S) = (1 - \varepsilon_b)^2 N(S)$

 $N_2(S) = \varepsilon_b^2 N(S)$


 $N_1(S) = 2\varepsilon_b(1 - \varepsilon_b)N(S)$

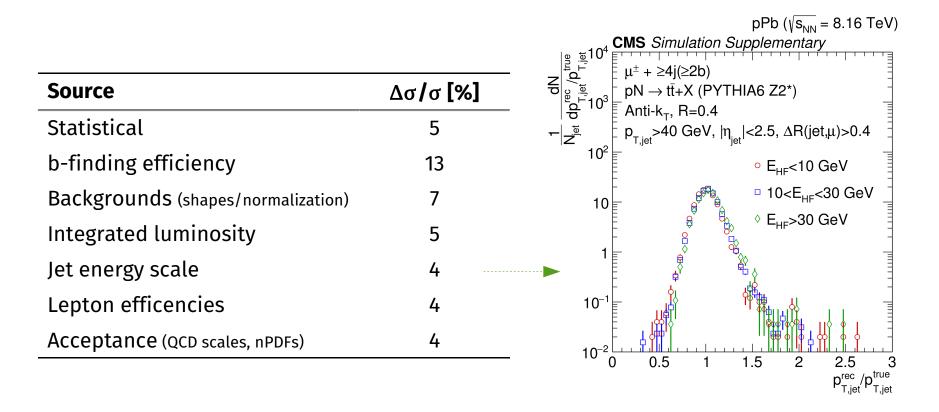
 $\widetilde{m}_{\mathrm{W}(\mathbf{i}\mathbf{i})} = (1 + \delta_{ISF} \cdot \theta_{ISF}) \cdot m_{\mathrm{W}(\mathbf{i}\mathbf{i})}$

- Can be compared visually with pp-case of slide 14
- Use fully parametric approach to fit total signal events, profiling
 - background normalization / shape distortions
 - b-finding efficiency →
 - jet energy scale →
- Estimated acceptance of \approx 6% and efficiency of \approx 63-90% for e (μ)
 - based on PYTHIA simulations (small nuclear modif. factors predicted by POWHEG)

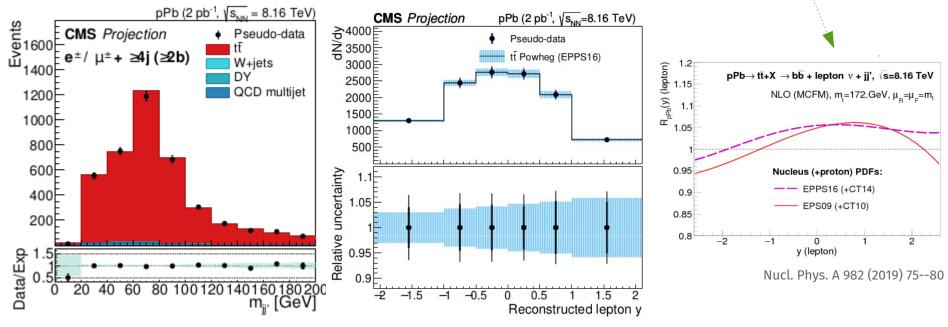

Result

- Clear observation of pPb \rightarrow tt well above 5σ
- Cross section measured to be $\sigma_{t\bar{t}} = 45 \pm 8$ (total) nb $^{17\%$ unc.
 - in good agreement with the NLO prediction 59.0 ± 5.3 (PDF) $^{+1.6}_{-2.1}$ (scale) nb

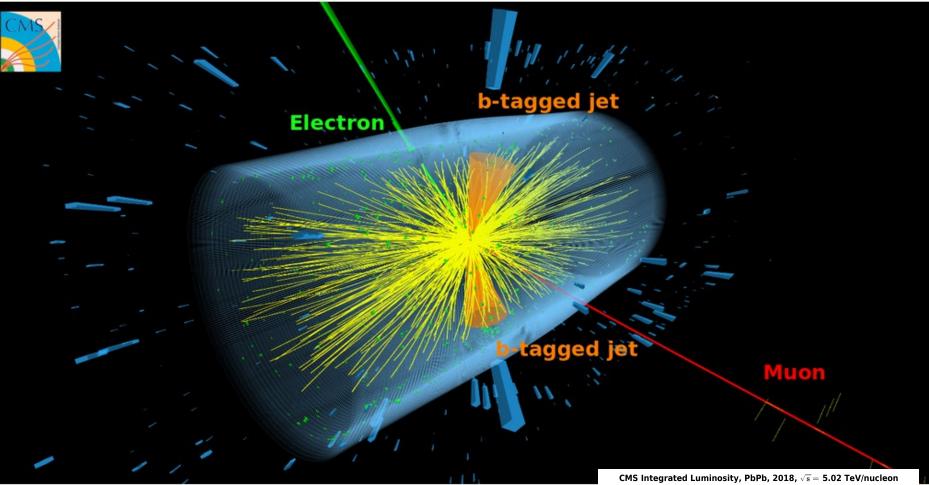
An "alternative" to a Bayesian posterior using m_{top}


24

Using leading b-tagged jets Pairing after minimizing |m(bjj')-m(blv)|

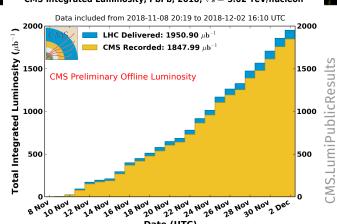

Main uncertainties

- Fitting strategy is expected to scale most uncertainties with luminosity^{1/2}!
 - determine in-situ crucial ingredients: JES, ε_{b} , background normalization
 - more careful assessment of background shapes needed with higher stats



Projections for the HL-LHC

- With 2/pb of data of future runs, expect to contribute effectively to probe nPDFs
 - resonant $W \rightarrow qq'$ can be used to obtain background-subtracted distributions
 - Using a *sPlot* technique (just like B-physics)
 - projected uncertainty expected to be competitive with current EPPS16 unc.
 - ratio to pp reference expected to probe anti-shadowing region of nPDFs



CMS-PAS-FTR-18-027

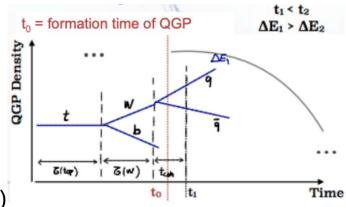
First evidence in PbPb

CMS-PAS-HIN-19-001

Date (UTC)

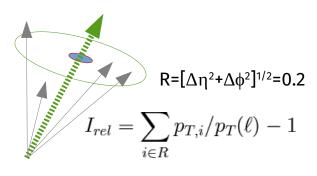
How?

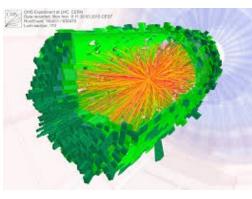
Most top quarks will be produced nearly at rest


- decay products will pass through the medium
- rely on charged leptons as clean probes

- Single lepton triggers, $p_T > 20$ (15) GeV for $e(\mu)$
- Offline require **p₁>25 (15) GeV** |η|<2.1 (2.4) for e(μ)
- op. charged leptons with m₁₁>20 GeV

(vetoeing 15 GeV around $Z \rightarrow ll$ pole for same-flavour dileptons)

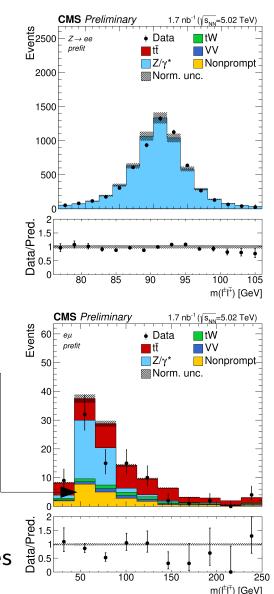

- veto back-to-back dilepton requiring A = $|1-\Delta\phi/\pi| > 0.01$
- identification and isolation specifically tuned for heavy-ion collisions



Lepton isolation

• Main contribution from the underlying event (UE)

- large event-to-event fluctuations + varying collision centrality
- need a fine-grained estimation of average energy flowing around leptons



Use FastJet to compute median energy density (ρ)

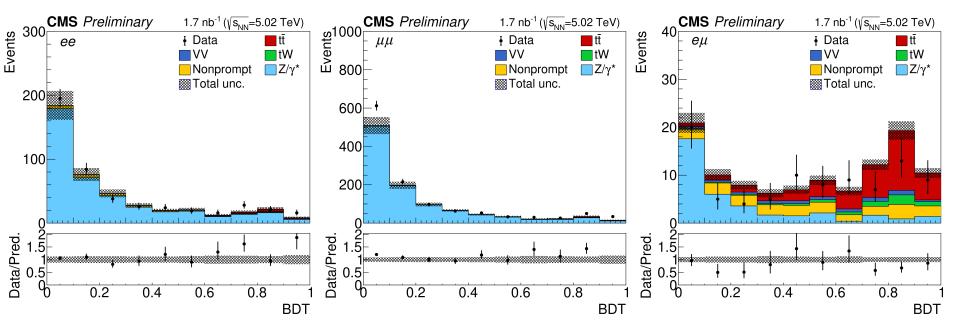
- for each event ρ is computed in 5 different η slices
- use slice corresponding to the reconstructed lepton η
- subtract UE contribution from initial isolation estimation: $I_{rel} \rightarrow I_{rel} UE(\rho)/p_{T}(l)$
- $UE(\rho)$ parameterization found from data, using Z \rightarrow ll events
- flattens dependency of isolation on the centrality of the collision

Main backgrounds

- Event selection is relatively simple
 - not many backgrounds left
- Drell-Yan production is expected to dominate →
 - Start with NLO QCD prediction (MG5_aMC@NLO)
 - Fair agreement in rate for $Z \rightarrow II$ selection
 - Off-shell Z/γ^* contributions in same-flavor
 - On-shell $Z \rightarrow \tau \tau \rightarrow e \mu$ in op. flavor
 - Correct dilepton p_{τ} using Z $\rightarrow \mu\mu$ data/MC ratio
- Non-prompt backgrounds are trickier
 - expect W+jets and QCD multijets with heavy flavors
 - use event-mixing technique
 - rank mixed events in distance wrt to original event
 (k-NearestNeighbor algorithm: centrality, isolation,...)
 - use nearest neigbors (1st out of 100), repeat several times

Dilepton p_T (prior to fit)

- Single leptonic-only most-discriminating variable
- Data below prediction in signal region ⇒ hints signal strength <1
 - off-shell DY fairly well modeled

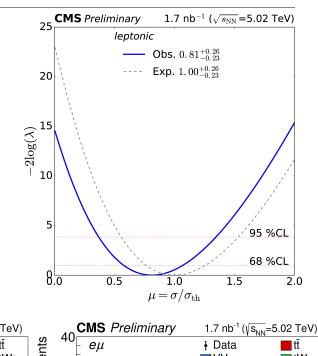


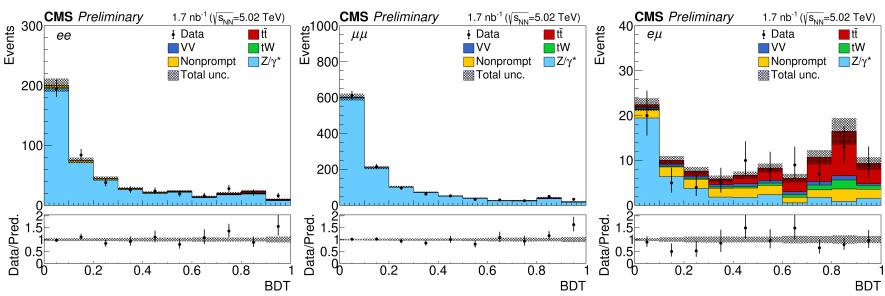
Dilepton BDT (prior to fit)

- Combine several leptonic variables in a multivariate discriminator (BDT)
 - p_τ(ll), η(ll), Δφ(ll) pT(l1),δp_τ/Σp_τ, Ση
 - train on MC to separate DY from tt
 - Variable is transformed to be approx. uniform for non-prompt background

32

• Data/MC agreement: similar observations as made for previous slide

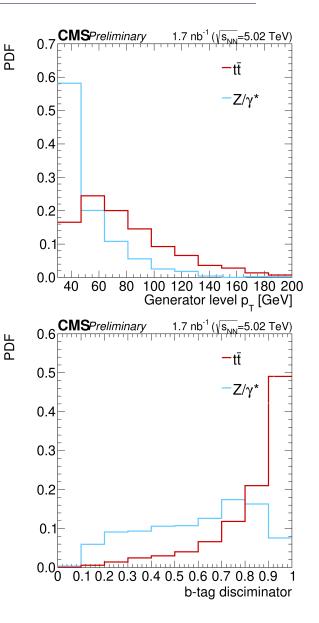



Signal extraction

- A profile likelihood method is used to extract the signal strength
- Uncertainties include the following sources:
 - Experimental
 - 5% luminosity
 - centrality/ p_{τ}/η -dependent trigger/id/iso scale factors from tag-and-probe
 - Non-prompt normalization based on same-sign data counts ($\delta N/N$ ~20%) shape based on a variation of the kNN distance
 - Shape statistical uncertainties (Barlow-Beeston)
 - Theory
 - Nuclear PDFs/QCD scales affect negligibly shapes but are included
 - Top $\boldsymbol{p}_{_{T}}$ modeling based on pp prescription
 - $\Delta m_t = \pm 1$ GeV based on Breit-Wigner re-weighting
 - Z $p_{_{T}}$ modeling based on data/MC uncertainty, normalization freely floating
 - 30% uncertainty on residual backgrounds: tW, WW, WZ, ZZ

Fit results

- Pre-fit deficits drive final µ=0.81±0.26
- Significance: 3.8 (obs.) 4.8 (exp.) 18% p-val
- Post-fit distributions in very good agreement
 - Fit alters changes mildly background shapes
 - background normalization barely changes

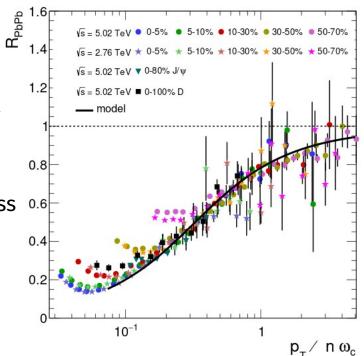


Adding b-jet information

Use particle-flow jets with constituent subtraction

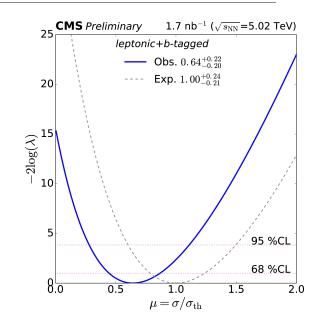
- using fine-grained η FastJet- ρ computation
- remove/correct energy of jet constituents based on ρ
 (cf. arXiv:1708.09429, arXiv:1403.3108)
- anti-k_T R=4 jets with p_T>30 GeV |η|<2.0 ΔR(j,l)>0.4
 - dedicated b-tag discriminator training for heavy ions
 - tune working point to yield approx.
 65% (5%) efficiency for b- (other-) jets
 - dependency on centrality from "track confusion"
- Consider only the two jets with highest b-tag discr.
 - count how many pass pass the threshold
 - Use counting to categorize events
 (similar to what was done for pp and pPb analyses)

B-counting related uncertainties


No measurement of efficiencies and mistag in data...

- too low statistics to constraint eb in-situ as in the pp/pPb cases
- expect however that mistags are negligible after b-tag discr. ranking
- use inflated efficiency uncertainties in the fit ($\delta \epsilon_{b}$ ~10% $\delta \epsilon_{a}$ ~30%)

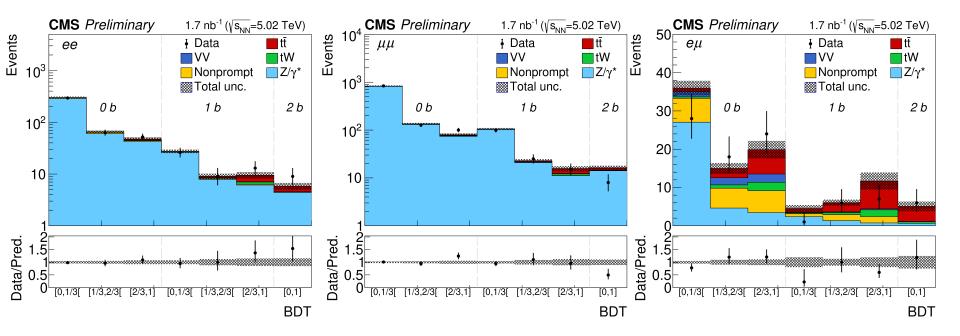
In addition, expect jet quenching to occur


- based R_{AA} fits to different spectra
- scaling behavior f(p_{τ}/ω_{c}) from arXiv:1703.10852 →
- data indicates universal high-p_↑ behavior
 use to parameterize mean constituent energy loss
 (1-7 GeV depending on the centrality)
- use estimate to dampen jet energy in MC
- moves jets out-of-threshold leading to
 ⁰
 ^{10⁻¹}
 ¹
 ^p_T

 decreased probability of finding the b jets from top decays (5-10% variations)

Fit results (b-tagged)

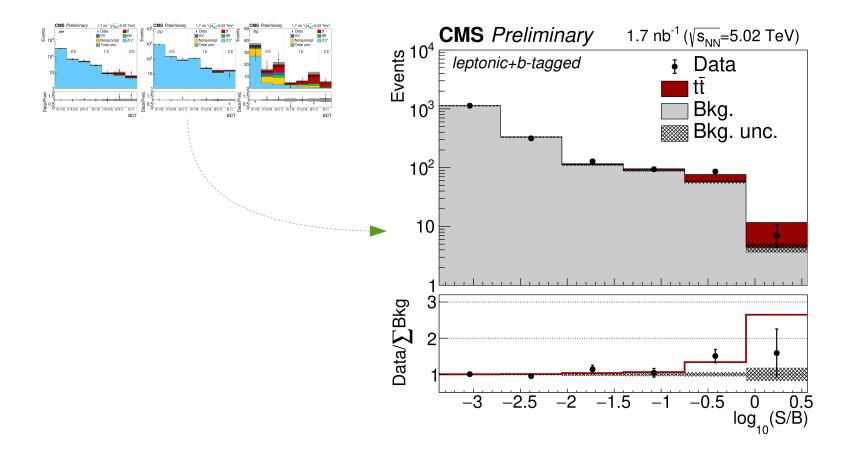
- Repeat the fit to the BDT discriminator in #b-tags
- Deficit is slightly enhanced: µ=0.64±0.22
 - still compatible with inclusive analysis
- Significance: 4.0 (obs.) 5.8 (exp.) 5% p-val
- Fit finds 43±11 signal events (out of 1768 selected)



	Final state								
Process	e^+e^-			$\mu^+\mu^-$			$\mathrm{e}^{\pm}\mu^{\mp}$		
-	0b	1b	2b	0b	1b	2b	0b	1b	2b
Z/γ^*	389.8 ± 15.4	$40.4{\pm}2.7$	$4.4{\pm}0.8$	1027.5±27.3	136.1 ± 5.7	14.1 ± 1.7	35.1 ± 1.7	$4.4{\pm}0.9$	0.7±0.2
Nonprompt	17.3 ± 2.2	$1.4{\pm}0.2$	≤ 0.1	$7.6 {\pm} 1.0$	$0.8{\pm}0.1$	≤ 0.1	17.1 ± 1.9	$4.0{\pm}0.4$	≤ 0.1
tW	$1.1 {\pm} 0.2$	$0.9{\pm}0.2$	≤ 0.1	$1.8{\pm}0.4$	1.3 ± 0.3	$0.2{\pm}0.1$	$3.4{\pm}0.7$	$2.5 {\pm} 0.5$	$0.4 {\pm} 0.1$
VV	$1.9 {\pm} 0.3$	$0.2{\pm}0.1$	≤ 0.1	$3.3 {\pm} 0.6$	$0.4{\pm}0.1$	≤ 0.1	$5.4{\pm}0.9$	$0.6 {\pm} 0.1$	≤ 0.1
Total background	410.2 ± 15.1	$42.8{\pm}2.7$	$4.5{\pm}0.8$	1040.2 ± 27.1	$138.6 {\pm} 5.7$	$14.4 {\pm} 1.8$	61.1 ± 2.9	11.5 ± 1.3	1.1 ± 0.2
tī signal	$2.8{\pm}0.8$	$3.2{\pm}0.8$	$1.3 {\pm} 0.4$	$4.5 {\pm} 1.2$	5.1 ± 1.2	$1.9 {\pm} 0.6$	$9.7{\pm}2.5$	10.7 ± 2.4	4.0±1.2
Observed (data)	410	48	9	1064	139	8	70	14	6

Post-fit distributions

Found in very good agreement with the data


- events with 2 b-tagged jets are solely counted

Post-fit distributions

• Found in very good agreement with the data

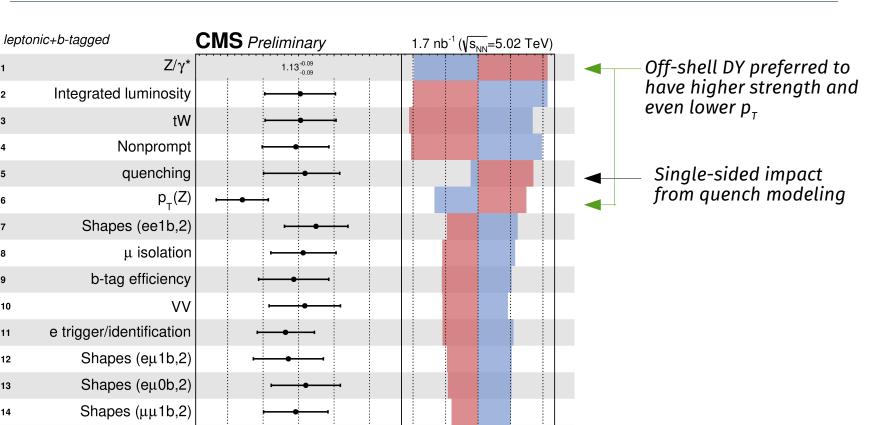
events with 2 b-tagged jets are solely counted

Systematic uncertainty impacts I

• Statistical uncertainty is by far the dominant source

- Several uncertainties to scale with luminosity (efficiencies, backgrounds)
- Jet related uncertainties are sub-leading with respect to background norm.
- Small theory uncertainty at this point, mostly dominated by Z p_{T}

Source	$\Delta \mu / \mu$			
Source	leptonic-only	leptonic+b-tagged		
Total statistical uncertainty	0.27	0.28		
The first sector of the sector of the sector is the	0.17	0.10		
Total systematic experimental uncertainty	0.17	0.19		
Background normalization	0.12	0.12		
Background and tt signal distribution	0.07	0.08		
Lepton selection efficiency	0.06	0.06		
Jet energy scale and resolution		0.02		
btagging efficiency		0.06		
Integrated luminosity	0.05	0.05		
Total theoretical uncertainty	0.05	0.05		
nPDF, $\mu_{ m R}$, $\mu_{ m F}$ scales, and $lpha_S(m_Z)$	< 0.01	< 0.01		
Top quark and Z boson $p_{\rm T}$ modeling	0.05	0.05		
Top quark mass	< 0.01	< 0.01		
Total uncertainty	0.32	0.34		


Systematic uncertainty impacts II

Shapes (eµ2b,0)

← Pull + 10 Impact - 10 Impact

-2

-1

0.02 0.04

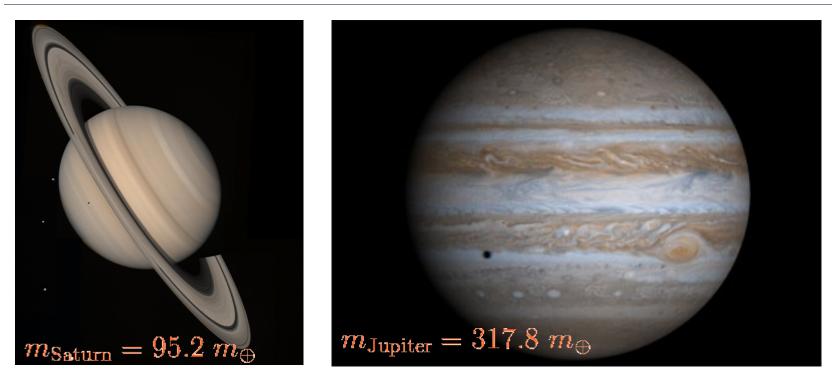
Λr


Post-fit: most nuisances barely change or get constrained

-0.04-0.02

 $(\hat{\theta} - \theta_0) / \Delta \theta$

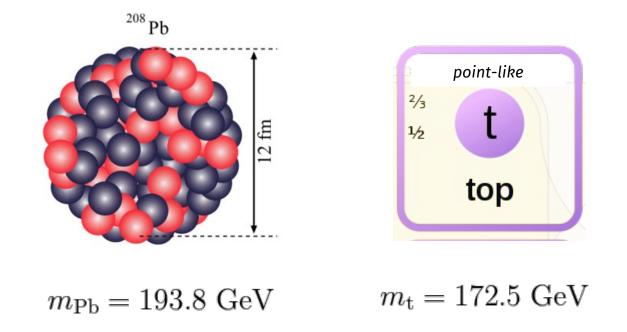
Grand-summary


- We have evidence for tt production in PbPb collisions at 4σ
- We measure $\begin{bmatrix} \sigma_{t\bar{t}} = 2.56 \pm 0.82 \ \mu b \\ \sigma_{t\bar{t}} = 2.02 \pm 0.69 \ \mu b \end{bmatrix}$ 32-34% unc.
- "Close enough" to theory prediction $\sigma_{PbPb \rightarrow t\bar{t}+X}^{NNLO+NNLL} = 2.98 \pm 0.14 (PDF \oplus \alpha_S(m_Z)) + 0.08 (scale) \mu b$

Conclusions

... with a reprise of Goya's "Saturn devouring his son"

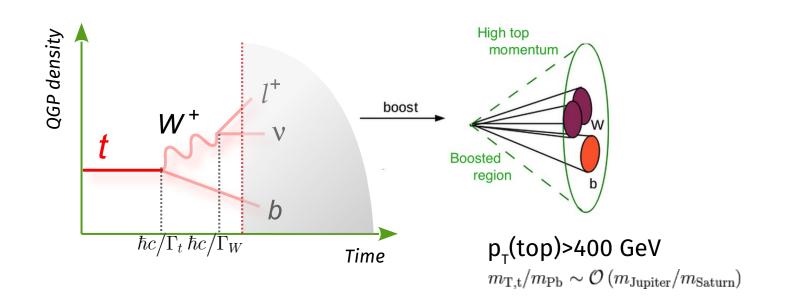
From mythology...


Legend has it as Saturn would predate his own children moments after birth.

Opis decided to hide their 3rd son in Crete deceiving Saturn with a wrapped stone.

The child grew up and eventually supplanted his father, as the prophecy predicted.

Jupiter was his name.


...to reality...

Different observations show the QGP after Pb ion collisions "predating" colored particles.

Recently CMS found evidence for the heaviest of the 3rd generation quarks in Pb collisions.

...and back to prophecies

In the future this child will boost up and eventually outlive the QGP.

May the prophecy (FCC-hh) be fulfilled for top quarks in heavy ions.

Conclusions

• CMS has concluded a series of measurements of σ (tt) with special runs

- pp and PbPb at 5.02 TeV/nucleon, pPb at 8.16 TeV/nucleon
- simple yet innovative ways of measuring a simple quantity
 (signal extraction, background estimations, in-situ constraints, stat. limited)
- first and only measurements so far
- cultimate in the first evidence of PbPb \rightarrow tt production

• The door to top as a new hard probe in heavy-ions has been opened

- Look forward for higher luminosity runs
- Combination with future measurements from other experiments
- Exploring the QGP properties from a new perspective...
 - ... but also use PbPb to search for new physics! (see arXiv:1812.07688)