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Production of Cosmic Rays

1. In the Fermi acceleration mechanism, charged particles increase
considerably their energies crossing back and forth many times the
border of a magnetic cloud (second-order Fermi mechanism) or of a
shock wave (first-order Fermi mechanism). Compute the number of cross-
ings that a particle must do in each of the mechanisms to gain a factor 10
on its initial energy assuming:

a. 3 =10-4tor the magnetic cloud and 3 = 10-2 for the shock wave;
b. B = 10-4for both acceleration mechanisms.

where B is the velocity of the astrophysical object (shock wave or cloud).
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Production of Cosmic Rays

In (E/E)

E = Ey(1 + &)". e

n(e «x B; B =107%) ~ 2.3 x 10*cycles
n(e « % B =10"% ~ 2.3 x 10° cycles.

n(e « B; B =10"% ~ 2.3 x 10* cycles
n(e o« % B =10"%) ~ 2.3 x 10° cycles.
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The GZK effect

2 .The Cosmic Microwave Background fills the Universe with
ohotons with a peak energy of 0.37 meV and a number
density of n ~ 400/cm3.

a. Determine the minimal energy (known as the GZK
threshold) that a proton should have in order that the
reaction py = A may occur.

b. The GZK threshold is 6x1017 eV. Discuss the probable
origin of the discrepancy found in the previous question.
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The GZK effect

In order that the reaction p y — A™ may occur the center-of-mass energy
should be greater than the mass of the A particle:

(pp + p)/CMB)2 = m,,

2 2

2 E,cyp (1 —Bcos6)

E, >

Assuming head-on collisions,

2 2
m, —m

, > ——— P~ 37 x10%%V.
4E)/CMB
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The GZK effect

E,>37x10"%eV — log(E,/eV) > 20.6
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The GZK effect

Cosmic microwave background spectrum (from COBE)
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The Heitler model tfor EAS

3. The main characteristic of an electromagnetic shower (say, initiated y
by a photon) can be obtained using a simple Heitler model. LetEg be 2 n=1
the energy of the primary particle and consider that the electrons,
positrons and photons in the cascade always interact after traveling a
certain atmospheric depth d = Xg, and that the energy is always equally
shared between the two particles. With this assumptions, we can
schematically represent the cascade as in the shown in the figure. ../ L . ..\ &

a. Write the analytical expressions for the number of particles and for
the energy of each particle at depth X as a function of d, n and Eq. n=4

b.The multiplication of the cascade stop when the particles reach a critical energy, Ec (when the decay
probability surpasses the interaction proba- bility). Using the expressions obtained in the previous question,
write as a function of Eg, Ecand A = d/ In 2, the expressions, at the shower maximum, for:

1. The average energy of the particles;

11. The number of particles, Nimay;

111. The atmospheric depth, Xnax.
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Heitler model for EAS

Y
At the n-th generation, S "
X=nxd G
................................................... ol
and the number of produced particles 1s simply
................................................ i
N =2".
n=4
As the energies of the particles are the same at the end of each generation, =~ 7 T
the energy of each particle 1s equal 1s the primary energy divided by the ¢
number of particles at this level, 1.e., °
E ®
E=—
2n
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11.

Heitler model for EAS

Y
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Heitler model for EAS

n=1
111. S -
................................................... ol
In(Np,
Nmax = 2l & Rmax = S n=3
ln 2 ............................ B, TR TR ON P ery. PO
where npyax 1s the maximum number of levels. /& /N / S \ n=4

Since d = A In 2 the maximum atmospheric depth can be written as o
ln(N m ) Ey ®
Xmax=nmade— ln2aXd=“n(E—c) .
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Heitler-Matthews model for EAS

4. Consider a shower initiated by a proton of energy EO. We
will describe it with a simple Heitler-like model: after each
depth d an equal number of pions, n,, and each oftthe3  ~(
types is produced: n9 n*, n-. Neutral pions decay through A +
n0 = vy and their energy is transferred to the . z
electromagnetic cascade. Only the charged pions will feed o e
the hadronic cascade. We consider that the cascade ends 7
when these particles decay as they reach a givendecay ~ ~° 0N
energy Eqec, after n interactions, originating a muon (plus an /]
undetected neutrino).

Assuming the validity of the superposition principle, according to which a nucleus of mass number
A and energy Eg behaves like A nucleons of energy Eo/A, derive expressions for:

a.the depth where this maximum is reached, Xmax;

b.the number of muons produced in the shower, N,.
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Heitler-Matthews model for EAS

P
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Heitler-Matthews model for EAS

n=1
a. Extrapolating for any element A protons WO///,,/,, """"""" W ------------
. y
with energy E/A n=2 7
n=3 // //
In (Eo/Edec) s
max — d /
In(ny)

ln (Aggec) d E()
Xmax = d []ln( ) - lIlA]

In(n,) B In(n,) E;..
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In (
Xmax = d

Heitler-Matthews model for EAS

Extrapolating for any element A protons

with energy E/A

_ dln (EO/Edec)
e In(r,)
E, )
AEdec d ]ln E()
ln(nn) - ln(nn) Edec

(Xmax) (g cm2)
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Heitler-Matthews model for EAS

For proton induced showers

2 Rdec
N,u — A’ch‘X:XmaX =\ 3

3

2
In(EQ/Egpe) - in( 3 )

2 In(nz) ( 2 ) log%nn (Eo/Edec) In(nz)
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Heitler-Matthews model for EAS

p
n=1
Extrapolating for any element A protons 770////////7 T 7T ------------
with energy E/A - |
Ey P n=3
NM N (Edec> -------------------------------------- w ---------------
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4.
b.

Heitler-Matthews model for EAS

Extrapolating for any element A protons

with energy E/A
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