Astroparticle Physics

10th IDPASC school, Nazaré, September 16th 2021

Exercises

Ruben Conceição

ECNICO

Production of Cosmic Rays

- **1.** In the Fermi acceleration mechanism, charged particles increase considerably their energies crossing back and forth many times the on its initial energy assuming:

 - **b**. $\beta = 10^{-4}$ for both acceleration mechanisms.

border of a magnetic cloud (second-order Fermi mechanism) or of a shock wave (first-order Fermi mechanism). Compute the number of crossings that a particle must do in each of the mechanisms to gain a factor 10

a. $\beta = 10^{-4}$ for the magnetic cloud and $\beta = 10^{-2}$ for the shock wave;

where β is the velocity of the astrophysical object (shock wave or cloud).

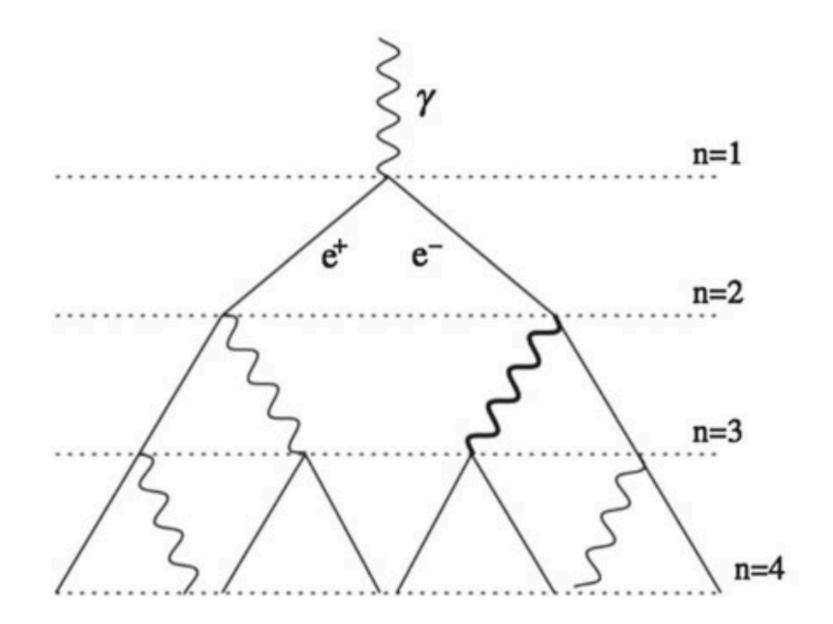
The GZK effect

- photons with a peak energy of 0.37 meV and a number density of n ~ $400/cm^3$.
 - **a.** Determine the minimal energy (known as the GZK threshold) that a proton should have in order that the reaction $p\gamma \rightarrow \Delta$ may occur.

2. The Cosmic Microwave Background fills the Universe with

b. The GZK threshold is 6x10¹⁹ eV. Discuss the probable origin of the discrepancy found in the previous question.

ruben@lip.pt



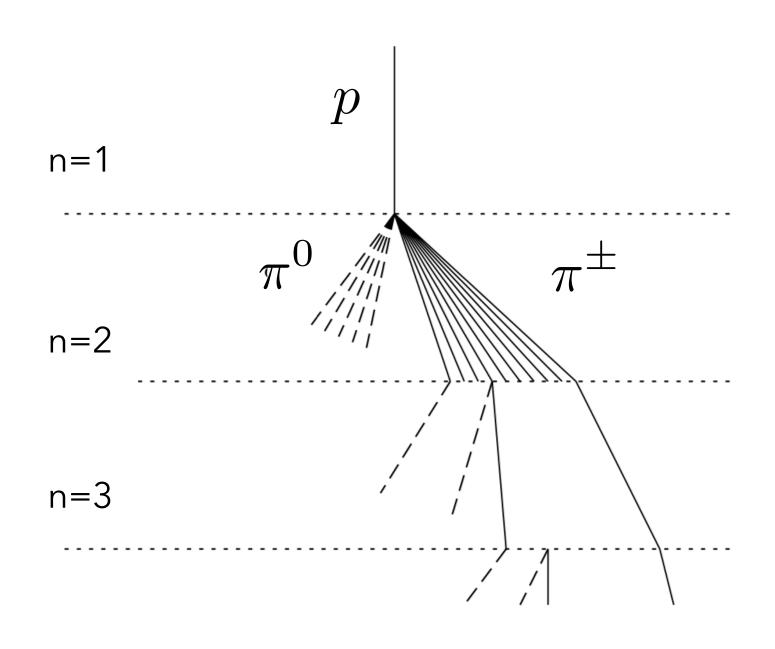
3. The main characteristic of an electromagnetic shower (say, initiated by a photon) can be obtained using a simple Heitler model. Let E₀ be the energy of the primary particle and consider that the electrons, positrons and photons in the cascade always interact after traveling a certain atmospheric depth $d = X_0$, and that the energy is always equally shared between the two particles. With this assumptions, we can schematically represent the cascade as in the shown in the figure.

a. Write the analytical expressions for the number of particles and for the energy of each particle at depth X as a function of d, n and E_0 .

- write as a function of E_0 , E_c and $\lambda = d/\ln 2$, the expressions, at the shower maximum, for:
 - The average energy of the particles; 1.
 - **ii.** The number of particles, N_{max};
 - **iii.** The atmospheric depth, X_{max}.

The Heitler model for EAS

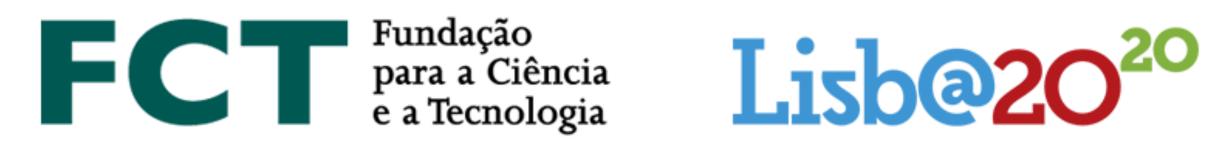
b. The multiplication of the cascade stop when the particles reach a critical energy, Ec (when the decay probability surpasses the interaction proba-bility). Using the expressions obtained in the previous question,



Heitler-Matthews model for EAS

4. Consider a shower initiated by a proton of energy E0. We will describe it with a simple Heitler-like model: after each depth d an equal number of pions, n_{Π} , and each of the 3 types is produced: π^0 , π^+ , π^- . Neutral pions decay through $\pi^0 \rightarrow \gamma\gamma$ and their energy is transferred to the electromagnetic cascade. Only the charged pions will feed the hadronic cascade. We consider that the cascade ends when these particles decay as they reach a given decay energy E_{dec}, after n interactions, originating a muon (plus an undetected neutrino).

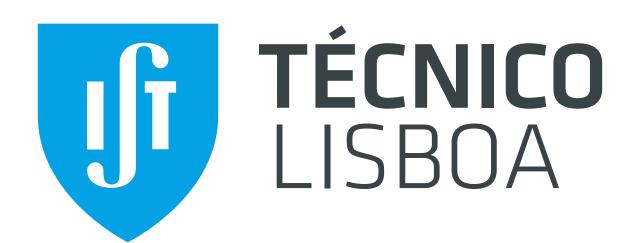
Assuming the validity of the superposition principle, according to which a nucleus of mass number A and energy E_0 behaves like A nucleons of energy E_0/A , derive expressions for: **a**. the depth where this maximum is reached, X_{max}; **b** the number of muons produced in the shower, N_{μ} .



ruben@lip.pt

5

Acknowledgements



UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regional

ruben@lip.pt

