Astroparticle Physics

10th IDPASC school, Nazaré, September 15th 2021

Cosmic Rays

Ruben Conceição

CNICO

What is Astroparticle Physics?

Study the properties of matter and interactions

Astrophysics / Cosmology Study Universe's evolution and surrounding astrophysical objects

Astroparticle physics

Particle physics

Understand the dynamics of our Universe through the radiation/particles collected at Earth

Cosmology

Photons

Messengers from the Universe

Charged cosmic rays

Neutrinos

Gravitational waves

Accelerator Experiment

♦ Beam, background...

Fundamental Particle Physics

Astroparticle Experiment

Access energy, space and time scales unattainable in Earth

Neutrino oscillations

A pratical example

Solar Neutrinos

Standard Solar Model

- Suilt upon our knowledge over:
 - ♦ Solar dynamics
 - Interaction cross-sections

It was noted since the 60's that the prediction of the flux of solar neutrino exceeded the observations

Neutrino oscillation

- A Neutrino oscillation was found while trying to solve the Solar neutrino problem
- Nobel prize 2015 (A. MacDonald [SNO] ; T. Kajita [Super-Kamiokande])

SUDBURY NEUTRINO OBSERVATORY (SNO)

ONTARIO, CANADA

Course Outline

- ♦ First Class ♦ Cosmic Rays
- Second Class Gamma-rays and Neutrinos
 The multi-messenger approach ♦ Future Projects
- Exercises Class

Understand/compute some of the phenomena discussed in the theoretical classes

Through this course...

Astrophysical Sources Fundamental Particle Physics Experimental Challenges

Disclaimer: biased view towards the highest energies

ruben@lip.pt

Member of the Pierre Auger and SWGO collaborations

Cosmic Rays

(Charged particles continuously bombarding Earth)

Spectral features (kinks) are related to the production and propagation of cosmic rays
 A sector of the production and propagation of the production and propagation of the provide the production and propagation of the production are related to the production and propagation of the production are related to the production are propagation.

ruben@lip.pt

An anthropomorphic interpretation of the spectrum
 An anthropomorphic interpretation
 An anthropomorphic interpretation
 An anthropomorphic interpretation
 An anthropomorphic interpretation
 An anthropomorphic
 An ant

ruben@lip.pt

Acceleration

Cosmic ray accelerators

- Violent phenomena like supernovas or
 pulsars
- Strong magnetic fields like supernova remnants (SNR) or active galactic nuclei (AGN)
- Interplay between strength of the magnetic field and the size of the "accelerator"

$$E_{max} \sim \beta_s \, z \, B \, L$$

ruben@lip.pt

How to accelerate particles above thermal energies?

Bottom-up acceleration mechanism initially proposed by Enrico Fermi (1949)

in collisions and inen relats maging non relativistic case MV MU-2 451+4 ain order MV2 WB

Fermi 2nd order acceleration mechanism

- A Particles accelerated in stochastic collisions with massive
 A interstellar cloud
- In the cloud reference frame

$$E_1^* = \gamma E_1(1 - \beta \cos \theta_1)$$

$$E_2^* = E_1^*$$

Returning to the LAB reference frame

$$E_2 = \gamma E_2^* (1 + \beta \cos \theta_2^*)$$

Therefore the relative energy gain is:

$$\frac{\Delta E}{E} \equiv \frac{E_2 - E_1}{E_1} = \frac{1 - \beta \cos \theta_1 + \beta \cos \theta_2^* - \beta^2 \cos \theta_1 \cos \theta_2^*}{1 - \beta^2} - 1$$

Fermi 2nd order acceleration mechanism

 A Particles are randomly scattered on the magnetic field in the cloud
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A (diffusion process)

 Due to the cloud movement, head on collisions are slightly more
 probable

 $\left\langle \cos \theta_1 \right\rangle = \frac{\int_{-1}^1 \cos \theta_1 (1 - \beta \cos \theta_1) d\cos \theta_1}{\int_{-1}^1 (1 - \beta \cos \theta_1) d\cos \theta_1} = -\frac{\beta}{3}$

♦ Fermi 2nd order gain:

$$\left\langle \frac{\Delta E}{E} \right\rangle \simeq \frac{4}{3}\beta^2$$

 $\left<\cos\theta_2^*\right> = 0$

(Clouds typically move at $\beta \sim 10^{-4}$)

Fermi 1st order acceleration mechanism

- Shock formation:
 - Sudden release of energy (CMEs, SNRs, GRBs, ...)
 - Supersonic flow hits an obstacle (AGNs jets, pulsar winds, ...)
- Same idea as before:

$$\frac{\Delta E}{E} = \frac{1 - \beta \cos \theta_1 + \beta \cos \theta_2^* - \beta^2 \cos \theta_1 \cos \theta_1}{1 - \beta^2}$$

A But now the crossing probability is proportional to:

 $\propto \cos \theta$

Supernova Remnant

 $heta_2^*$ 1

Fermi 1st order acceleration mechanism

$$\left\langle \cos \theta_1 \right\rangle = \frac{\int_{-1}^0}{\int_{-1}^0}$$

$$\left<\cos\theta_2^*\right> = \frac{\int_0^1}{\int_0^1}$$

♦ Fermi 1st order gain:

$$\left\langle \frac{\Delta E}{E} \right\rangle \simeq \frac{4}{3}\beta$$

 $\frac{1}{1}\cos^2\theta_1 d\cos\theta_1 = -\frac{2}{3}$

 $\frac{\cos^2 \theta_2^* \mathrm{d} \cos \theta_2^*}{\cos^1 \theta_2^* \mathrm{d} \cos \theta_2^*} = \frac{2}{3}$

(Shock fronts typically move at $~eta \sim 10^{-2}$)

The power law

Scientific American, (c) 1998

 \diamond In each cycle the particle gains a small fraction of energy ϵ . After n cycles it gets an energy:

 $E_n =$

Differential energy flux

$$\frac{dN}{dE} \propto E^{-\gamma}$$

Integral energy flux

 $N(E > E_0) \propto E^{-\gamma + 1}$

$$E_0(1+\varepsilon)^n$$

The power law

escape with $E > E_n$ is:

$$P_{E_n} = P_e \sum_{j=n}^{\infty} (1 - P_e)^j = (1 - P_e)^n$$

$$P_{E_n} = \left(1 - P_e\right)^{\ln\left(\frac{E}{E_0}\right) / \ln(1 + \varepsilon)}$$

$$\ln P_{E_n} = \frac{\ln\left(\frac{E}{E_0}\right)}{\ln(1+\varepsilon)}\ln(1-P_e) = \frac{\ln(1-P_e)}{\ln(1+\varepsilon)}\ln\left(\frac{E}{E_0}\right)$$

The index of the power-law carries information about production and propagation
 A second propagation
 A se

$$\frac{dN}{dE} \propto \left(\frac{E}{E_0}\right)^{\gamma}$$
 with $\gamma = \alpha + 1$

$$\left(\frac{dN}{dE}\right)_{\rm Earth} \propto \left(\frac{dN}{dE}\right)$$

 \diamond If the particle escapes from the shock region with some probability P_e then the probability to

$$\frac{N}{N_0} = P_{E_n} = \left(\frac{E}{E_0}\right)^{-\alpha} \quad \text{with} \quad \alpha = -\frac{\ln(1-P_e)}{\ln(1+\varepsilon)} \simeq \frac{E}{2}$$

$$\left(\frac{dN}{dE}\right)_{\rm source} \propto E^{-2}$$

$$\times \tau_{\rm escape}(E) \propto E^{-2.7}$$

source

Propagation

Propagation in the galaxy

 $\frac{\partial N_i}{\partial t} = Q_i + \vec{\nabla} \cdot \left(D \vec{\nabla} N_i - \vec{V} N_i \right) +$

Sources

Diffusion

Convection

$$\frac{\partial}{\partial E} (b(E)N_i) - \frac{N_i}{\tau_i} + \sum_{j>i} \frac{P_{ji}N_j}{\tau_j} - \dots$$
Energy gains Escape Spallation Spallation and losses gains and decay losses 26

- the Galactic randomly magnetised ISM
 - ♦ Confinement times ~10⁷ years

♦ CR are basically isotropic

 Use secondary/primary composition ratios to
 constrain the propagation models

♦ e.g. B/C ratio

$$\begin{aligned} \frac{\partial N_i}{\partial t} = &Q_i + \vec{\nabla} \cdot \left(D \vec{\nabla} N_i - \vec{V} N_i \right) + \frac{\partial}{\partial E} (b(E) N_i) \\ &- \left(n \beta_i c \sigma_i^{spall} + \frac{1}{\gamma_i \tau_i^{decay}} + \frac{1}{\gamma_i \hat{\tau}_i^{esc}} \right) N_i \\ &+ \sum_{j>i} \left(n \beta_j c \sigma_{ji}^{spall} + \frac{1}{\gamma_i \tau_{ji}^{decay}} \right) \end{aligned}$$

The knee(s)

Towards the highest energies

Proton deflection in the galactic magnetic field

Magnetic (extra-)galactic field : (nG) μ G

GZK effect

\diamond Discovery of the Δ baryon in accelerator measurements

Discovery of the cosmic microwave background

GZK effect

♦ GZK cuttoff

- ♦ Greisen, Zatsepin, Kuz'min (1966)
- Energy loss process

Prediction: CR energy spectrum should have a cutoff around E ~ 10^{20} eV

ruben@lip.pt

$p + \gamma_{CMB} \to \Delta^+ \to p + \pi^0$ $p + \gamma_{CMB} \to \Delta^+ \to n + \pi^+$

2.7K

103

Propagation Distance (Mpc)

104

π

GZK vs nuclei photo-desintegration

GZK effect

Giant Dipole Resonance

At 10²⁰ eV proton and iron have similar attenuation lengths

Direct Measurements

Direct detection of cosmic rays

Balloon experiments e.g.: CREAM-III

Satellite experiments e.g.: AMS-II

Operation principle

Similar to what is done in an HEP accelerator experiment

Operation principle

Similar to what is done in an HEP accelerator experiment

be directly measured up to PeV

 Relation between elements
 can be used to constrain acceleration properties

Energy spectrum

Positron flux

Positron excess origin

Astrophysical origin

Pulsar winds

AMS continues to gather statistics and by 2024 should be able to distinguish between the two scenarios

Fundamental particle physics

Dark matter decay/annihilation

Indirect Measurements

- ♦ Satellites are not a viable option given the scarce fluxes and extreme high energies
- The interaction of high energy radiation/particles with Earth atmosphere produce huge particle cascades

Extensive Air Showers

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Shower observables

ruben@lip.pt

Longitudinal Profile

Lateral Profile (LDF)

EAS engine

EAS engine

Electromagnetic component

Hadronic component

Muonic component

ruben@lip.pt

43

EAS engine

Heitler-Matthews model

$$\langle X_{\rm max} \rangle \propto \ln \left(\frac{E_0}{A} \right)$$

 $\langle N_{\mu} \rangle \propto A^{1-\beta} E_0^{\beta}$

The shape and relative fluctuations of the muon number distribution gives access to the properties of the **FIRST hadronic interaction** (fraction of energy carried by neutral pions)

Detection Techniques

The Pierre Auger Observatory as a case study for the Cosmic Ray indirect detection field

46

Pierre Auger Observatory

Pierre Auger Collaboration

Argentina Australia Belgium Brazil Colombia Czech Republic France Germany Italy Mexico Netherlands Poland Portugal Romania Slovenia Spain USA

International collaboration of 17 Countries and ~ 400 scientists

Pierre Auger Observatory

Pierre Auger Observatory

Built to detect and study the extremely rare UHECR

- ~ 1600 Surface detectors (SD)
- In a 1.5 km hexagonal grid
- 3000 km²
- 4 Fluorescence Detectors (FD)
- 6 x 4 + 3 Fluorescence Telescopes

What's the size of the Observatory?

Nazaré

Really big!!

Pierre Auger Observatory

Surface Detectors (SD)

- Sample shower secondary particles reaching the ground ♦ 100% duty cycle
 - \diamond Arrival time \rightarrow primary cosmic ray direction
 - Energy estimation: signal at 1000 meters from the shower core

Surface Detectors

Water Cherenkov Detector (WCD)

- FD: collects the fluorescence light produced by the shower development
- Only operate in moonless clear sky nights
 (~15% duty cycle)
 - \diamond Energy \rightarrow integral of the collected photons
 - ♦ Primary composition → Shower maximum depth

Fluorescence Detector

Hybrid Technique (FD + SD)

Hybrid technique (FD + SD)

Ultra High Energy Cosmic Rays What have we learned so far?

UHECR energy spectrum

Put strong constraints on UHECR production and propagation

Pierre Auger Collaboration, ICRC this year

Are UHECRs produced in our galaxy?

Are UHECRs produced in our galaxy?

Galaxy Plane

UHECR have an extra-galactic origin

Galaxy Plane

180

♦ UHECRs are accelerated:

- ♦ somewhere in our Universe
 - If from the photon and neutrino limits (next class)
- ♦ Outside the galaxy

Gala

-90

The primary **composition** goes from **light to heavier** as its energy increases ruben@lip.pt

Composition fits to X_{max}

35th ICRC, PoS (2017) 506

0

0

0

0

Muon

0

Combination of different measurements **reveals tension between** data and all hadronic interaction models

Relative fluctuations suggests that **discrepancy** might be related to hadronic low energy interactions in the shower

ruben@lip.pt

Shower description

Phys.Rev.Lett. 126 (2021) 15, 152002

the X_{max} distribution tail ♦ If there is a large fraction of protons

Proton-Air Cross-section

Proton-air cross-section

34th ICRC, PoS (2015) 401

Testing exotic scenarios

- Put the strongest limit on the existence of ultra-relativistic magnetic monopoles (MM)
 - Test on fundamental particle physics exotic scenarios
 - Relics of phase transitions in the early universe
- AMM produce air showers with a distinct
 signature from standard ones
 - Should be easily observed by the Auger FD
 - $\diamond \quad E_{mon} \approx 10^{25} \, \mathrm{eV}$
 - $A M_{mon} \in [10^{11}; 10^{16}] \,\mathrm{eV/c^2}$

Phys.Rev. D94 (2016) no.8, 082002

Lorentz Invariance Violation

- LIV is predicted by many Quantum Gravity theories
- phenomenological way and see impact in shower observables

$$E^{2} - p^{2} = m^{2} + \eta^{(n)} \frac{p^{n+2}}{M_{\rm Pl}^{n+2}}$$

- LIV doesn't allow the pi0 to decay immediately
- The fluctuations of the number of muons at the ground shows a high sensitivity to LIV
- Stringent cut for high energy interactions

ruben@lip.pt

-8

-10

-12

-14

-16

Next years of the Pierre Auger Observatory

(A plethora of measurements to fully understand the shower)

Next Class

Next class

A Neutral messengers A Neutrinos

Astroparticle Multi-messenger Era

Future Projects

Acknowledgements

UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regional

Backup slides

75

More trouble for Hadronic Interaction Models...

- \diamond Combined fit of energy scale (R_F) and hadronic component rescaling (R_{had}) [Hybrid: SD + FD]
- Depth of maximum of muon production depth ($X^{*\mu}_{max}$)

X_{max} distribution momenta

ruben@lip.pt

UHECR

-90

