

The Dark Side of the Forces

# **DIRECT DARK MATTER DETECTION (II)**

Henrique Araújo Imperial College London

INTERNATIONAL DOCTORATE NETWORK IN PARTICLE PHYSICS, ASTROPHYSICS AND COSMOLOGY (IDPASC)

NAZARÉ, PORTUGAL – SEPTEMBER 2021

## **DIRECT DM DETECTION – OUTLINE**

- 1a. The dark matter landscape
  - The big picture
  - Dark matter candidates
- 1b. Weakly Interacting Massive Particles
  - Thermal relics: the WIMP paradigm
  - Our own (galactic) WIMPs

### 2. How to catch a WIMP

- Direct detection strategies
- The experimental challenge
- Detector technologies

### 4. Exercises – This afternoon



### HOW TO CATCH A WIMP





- Focus on WIMPs: stable, neutral, cold, massive particles, interacting via gravity and hopefully via the weak force
- WIMPs can solve the DM problem in all its glory: astrophysical, cosmological and particle physics

## HOW TO CATCH A WIMP

### 1. Direct detection (scattering XS)

- Nuclear recoils from elastic scattering
- Rate, A- & J-dependence, annual modulation, directionality
- Particle mass (if not too heavy)
- Maybe some astrophysical parameters  $(v_{esc})$ ?





### 2. Indirect detection (decay, annihilation XS)

- High-energy cosmic-rays, *γ*-rays, neutrinos, etc.
- Over-dense regions, annihilation signal  $\propto n^2$
- Very challenging backgrounds

### 3. Accelerator searches (production XS)

- MET, mono-X, dark photons, etc.
- Mass measurement may be poor at least initially
- Can it establish that new particle is the DM?

## WIMP-NUCLEUS ELASTIC SCATTERING RATES

The 'spherical cow' galactic model

- DM halo is 3-dimensional, stationary, has no lumps
- Isothermal sphere with density profile  $\rho \propto r^{-2}$
- Local density  $\rho_0 \sim 0.3 \; {\rm GeV/cm^3}$

~ few keV

H. Araújo

Maxwellian (truncated) velocity distribution, f(v)

- Characteristic velocity  $v_0 = 220$  km/s
- Escape velocity  $v_{esc} = 544$  km/s
- Earth velocity  $v_E = 230$  km/s



Nuclear recoil energy spectrum [events/kg/day/keV]

$$\frac{dR}{dE_R} = \frac{\rho_0 \sigma_A}{2m_{\chi} \mu_A^2} F^2(q) \int_{\nu_{\min}}^{\nu_{\max}} \frac{f(\vec{\nu})}{\nu} d^3 \nu$$
$$\frac{dR}{dE_R} \approx \frac{R_0}{E_0 r} e^{-E_R/E_0 r}, \ r = \frac{4m_W m_T}{(m_W + m_T)^2} \le 1$$

### NUCLEAR FORM FACTOR, F<sup>2</sup>(q)

The FF accounts for the finite nuclear size: for higher momentum transfer, when  $\lambda = h/q$  becomes smaller than the nuclear radius, the scattering XS decreases

- F(q) is the Fourier transform of a spherically symmetric ground-state mass distribution normalised so that F(0) = 1
- Mass distribution approximated by charge distribution
- Since  $E_R = q^2/2m_T$ , we can express it as  $F^2(E_R)$  instead



FIG. 4: Helm and FB form factors for <sup>70</sup>Ge



### (SPIN-INDEPENDENT) SCATTERING RATES



### **ANALOGY: NEUTRON ELASTIC SCATTERING**



$$E_R = E_n \frac{2A}{(A+1)^2} (1 - \cos \Theta) \qquad E_R = E_n \frac{4A}{(A+1)^2} \cos^2 \alpha \qquad E_{R,max} = E_n \frac{4A}{(A+1)^2}$$

Generally, for a (non-relativistic) projectile with mass m and kinetic energy  $E_i$  hitting a target with mass M, the recoil energy is given by

$$E_R = E_i \frac{4mM}{(m+M)^2} \cos^2 \alpha$$
 defining  $r = \frac{4mM}{(m+M)^2} \rightarrow E_{R,max} = r E_i$ 

### **ANALOGY: NEUTRON ELASTIC SCATTERING**

- Kinematic factor peaks at r = 1 when projectile and target have the same mass
  - In this case, the projectile transfers all its energy for head-on collisions
  - Heavier nuclei for heavier WIMPs, lighter nuclei for lighter WIMPs
  - Also why hydrogenated materials are best at moderating neutrons
- Calibration of WIMP targets
  - For 100 GeV WIMPs, a Xe target is well calibrated by MeV neutrons
  - Sources of MeV neutrons: Am-Be ( $\alpha$ ,n), Cf-252 fission, D-D generators
  - Signal and calibration <u>maximum</u> energies:

Neutrons: Good NR calibration but that means also good NR background...

100 GeV WIMP on xenon (A~131)

 $E_{R,max} = r E_{\chi} \sim E_{\chi}$ 

220 km/s WIMP 
$$\rightarrow E_{R,max} = 30 \text{ keV}$$

MeV neutron on xenon  $E_{R,max} = r E_n \sim 0.03 E_n$ 1 MeV neutron  $\rightarrow E_{R,max} = 30 \text{ keV}$ 

## WIMP-NUCLEON ELASTIC SCATTERING XS

- Coupling to p and n more useful than coupling to nucleus
  - Compare different targets materials, collider searches, indirect searches,...
- Spin-independent (scalar) interaction

$$\sigma_A^{SI}(q \to 0) = \frac{4\mu_A^2}{\pi} [Zf_p + (A - Z)f_n]^2 \approx \frac{\mu_A^2}{\mu_p^2} \sigma_p A^2$$

- Note A<sup>2</sup> enhancement (coherence) more sensitive search
- Spin-dependent (axial-vector) interaction

$$\sigma_A^{SD}(q \to 0) = \frac{\mu_A^2}{\mu_p^2} \sigma_{p,n}^{SD} \left[ \frac{4}{3} \frac{J+1}{J} \left( a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2 \right]$$

- Note J (nuclear spin) replaces  $A^2$  enhancement less sensitive
- Some targets more sensitive to proton, others to neutron scattering

 $\sigma_A$ - WIMP-nucleus XS (we measure this)

 $\sigma_p$ - WIMP-proton XS

 $\sigma_n$ - WIMP-neutron XS

More complete approach: non-relativistic EFT

11 operators for exchange of spin-0 or spin-1 mediators

6 independent responses contribute to amplitude

(Fitzpatrick, Haxton, Anand, et al: 1203.3542, 1405.6690)

### WIMP-NUCLEON ELASTIC SCATTERING XS



## **ANNUAL MODULATION**

Galactic rotation through stationary halo: "The Earth bathes in a WIMP wind"



- Modulation phase can differ for different targets
- Any seasonal effects will have opposite polarity in the Southern hemisphere
- DAMA modulation has finally been ruled out with the same target material

## **DIRECTIONAL DETECTION**

• Effective background discrimination: signal from fixed point in the sky (Cygnus)



- Difficult to achieve large target masses with a gas (needed for directionality)
- Would require very large detectors but R&D and concrete plans exist

## **BUILDING A WIMP DETECTOR**

- Consider 1 kg detector target, sensitive to very low energies
- Expected WIMP interaction rates - 0.001-0.000,000,001 events/day
- However...
- Radioactivity and cosmic rays
  >1,000,000 events/day
- Neutrons are a fatal background!
  - Several events/day



## **BUILDING A WIMP DETECTOR**

- Move deep underground
- Select radio-pure materials
- Shield against external γ-rays
- Shield against external neutrons
- 'Veto' internal neutrons
- Discriminate between 'nuclear recoils' and 'electron recoils'



## THE EXPERIMENTAL CHALLENGE



### **Key detector requirements**

- Large mass x time (~tonne·yr)
- Low E<sub>R</sub> threshold (~keV)
- Low NR background (~0 in ROI)
- ER/NR discrimination

- Low-energy detection is easy ;)
  Several technologies allow sub-keV NR detection
- Rare event searches are also easy ;)
  Not a problem at >100 MeV, think neutrinos
- But doing *both* is hard!
  - Large mass gives exposure & self-shielding
  - Hard to collect signal 'carriers' (threshold)
- And there is no trigger...

### BACKGROUNDS

- <u>Nuclear recoils</u> same signature, possibly irreducible
  - Neutrons from ( $\alpha$ ,n) reactions and spontaneous fission from U/Th trace contamination
    - Local environment, shields, vessels, components, target material itself
  - Nuclear recoils from alpha decay (e.g. radon daughter plate-out)
    - Contaminating detector surfaces
  - High energy neutrons from atmospheric muon spallation
    - Difficult to shield completely even underground
  - Eventually, coherent neutrino-nucleus scattering

#### <u>Electron recoils</u> – discrimination power is finite

- Gamma-ray background external to target
  - U/Th, K-40, Cs-137, from environment, shields, vessels, components
- Contamination in target bulk and detector surfaces
  - U/Th betas and gammas (Pb-214, Bi-214, Pb-210,...)
  - Cosmogenic (Ar-39, Ge-68, Ge-71,...), anthropogenic (Kr-85, Cs-137,...)
- Eventually, elastic scattering of solar pp neutrinos off electrons

### **NEUTRINOS AND MORE NEUTRINOS...**

- Two neutrino processes trying to spoil the party for next-generation experiments
- But these are also interesting physics signals in their own right
- Neutrino-electron elastic scattering  $v + e^- \rightarrow v + e^-$ 
  - Solar pp neutrinos will dominate ER background in the best experiments
  - Flat-(ish) ER spectrum at low energy, can discriminate from NR
  - Interesting physics? Maybe, if we could measure this at % level or better
- Coherent neutrino-nucleus scattering  $\nu + A \rightarrow \nu + A$ 
  - Several neutrino fluxes produce very low energy NR events which eventually will limit us
  - Single scatters, uniformly distributed, recoil spectrum looks like WIMPs
  - Interesting physics? Yes.

### **CEvNS OBSERVED IN 2017!**

Cite as: D. Akimov *et al.*, *Science* 10.1126/science.aa00990 (2017).



#### Coherence condition $qR \lesssim 1$

Translates to 
$$E_{\nu} \lesssim 50 \text{ MeV}$$
  
 $T_{\text{max}} = \frac{2E_{\nu}^2}{M + 2E_{\nu}} \sim \text{keV}$ 

#### **Observation of coherent elastic neutrino-nucleus scattering**

D. Akimov,<sup>1,2</sup> J. B. Albert,<sup>3</sup> P. An,<sup>4</sup> C. Awe,<sup>4,5</sup> P. S. Barbeau,<sup>4,5</sup> B. Becker,<sup>6</sup> V. Belov,<sup>1,2</sup> A. Brown,<sup>4,7</sup> A. Bolozdynya,<sup>2</sup> B. Cabrera-Palmer,<sup>8</sup> M. Cervantes,<sup>5</sup> J. I. Collar,<sup>9\*</sup> R. J. Cooper,<sup>10</sup> R. L. Cooper,<sup>11,12</sup> C. Cuesta,<sup>13+</sup> D. J. Dean,<sup>14</sup> J. A. Detwiler,<sup>13</sup> A. Eberhardt,<sup>13</sup> Y. Efremenko,<sup>6,14</sup> S. R. Elliott,<sup>12</sup> E. M. Erkela,<sup>13</sup> L. Fabris,<sup>14</sup> M. Febbraro,<sup>14</sup> N. E. Fields,<sup>9</sup>‡ W. Fox,<sup>3</sup> Z. Fu,<sup>13</sup> A. Galindo-Uribarri,<sup>14</sup> M. P. Green,<sup>4,14,15</sup> M. Hai,<sup>9</sup>§ M. R. Heath,<sup>3</sup> S. Hedges,<sup>4,5</sup> D. Hornback,<sup>14</sup> T. W. Hossbach,<sup>16</sup> E. B. Iverson,<sup>14</sup> L. J. Kaufman,<sup>3</sup>|| S. Ki,<sup>4,5</sup> S. R. Klein,<sup>10</sup> A. Khromov,<sup>2</sup> A. Konovalov,<sup>1,2,17</sup> M. Kremer,<sup>4</sup> A. Kumpan,<sup>2</sup> C. Leadbetter,<sup>4</sup> L. Li,<sup>4,5</sup> W. Lu,<sup>14</sup> K. Mann,<sup>4,15</sup> D. M. Markoff,<sup>4,7</sup> K. Miller,<sup>4,5</sup> H. Moreno,<sup>11</sup> P. E. Mueller,<sup>14</sup> J. Newby,<sup>14</sup> J. L. Orrell,<sup>16</sup> C. T. Overman,<sup>16</sup> D. S. Parno,<sup>13</sup>¶ S. Penttila,<sup>14</sup> G. Perumpilly,<sup>9</sup> H. Ray,<sup>18</sup> J. Raybern,<sup>5</sup> D. Reyna,<sup>8</sup> G. C. Rich,<sup>4,14,19</sup> D. Rimal,<sup>18</sup> D. Rudik,<sup>1,2</sup> K. Scholberg,<sup>5</sup> B. J. Scholz,<sup>9</sup> G. Sinev,<sup>5</sup> W. M. Snow,<sup>3</sup> V. Sosnovtsev,<sup>2</sup> A. Shakirov,<sup>2</sup> S. Suchyta,<sup>10</sup> B. Suh,<sup>4,5,14</sup> R. Tayloe,<sup>3</sup> R. T. Thornton,<sup>3</sup> I. Tolstukhin,<sup>3</sup> J. Vanderwerp,<sup>3</sup> R. L. Varner,<sup>14</sup> C. J. Virtue,<sup>20</sup> Z. Wan,<sup>4</sup> J. Yoo,<sup>21</sup> C.-H. Yu,<sup>14</sup> A. Zawada,<sup>4</sup> J. Zettlemoyer,<sup>3</sup> A. M. Zderic,<sup>13</sup> COHERENT Collaboration#



## WIMP SEARCH TECHNOLOGY ZOO

#### **Ionisation Detectors**

Targets: Ge, Si, CS<sub>2</sub>, CdTe

CoGeNT, CDEX, D3, DAMIC, DRIFT, DM-TPC, GENIUS, IGEX, MIMAC,

Light & Ionisation Detectors

#### Targets: Xe, Ar

ArDM, Argo, LUX, WARP, DarkSide, DARWIN, Panda-X, XENON, ZEPLIN, LZ cold (LN<sub>2</sub>)

#### **Scintillators**

Targets: NaI, Xe, Ar ANAIS, MiniCLEAN, DAMA, ZEPLIN-I, DEAP-3600, DM-ICE, KIMS, LIBRA, PICOLON, NAIAD, SABRE, XMASS



#### Light & Heat Bolometers

Targets: CaWO<sub>4</sub>, BGO, Al<sub>2</sub>O<sub>3</sub> CRESST, ROSEBUD cryogenic (<50 mK) Heat & Ionisation Bolometers

Targets: Ge,Si CDMS, EDELWEISS, SuperCDMS cryogenic (<50 mK)

**Bolometers** Targets: Ge, Si, Al<sub>2</sub>O<sub>3</sub>, TeO<sub>2</sub> CRESST-I, CUORE, CUORICINO

#### **Bubbles & Droplets**

CF<sub>3</sub>Br, CF<sub>3</sub>I, C<sub>3</sub>F<sub>8</sub>, C<sub>4</sub>F<sub>10</sub> COUPP, PICASSO, PICO, SIMPLE

### **CRYOGENIC DETECTORS**



 $\Delta T_{\text{max}} = \frac{E}{C}$ 

Thermal signal lost with increasing mass: ideally, collect phonons before they thermalise

⊿R

T<sub>0</sub>~10-50 mK

Phonon channel: ~keV threshold, no quenching Can collect a second signature for discrimination:

- Phonons + ionisation (e.g. CDMS, EDELWEISS)
- Phonons + scintillation (e.g. CRESST)

#### Superconducting Transition-Edge Sensor (CDMS)







**EDELWEISS DETECTORS** 

#### **CRESST DETECTORS**



#### S-CDMS DETECTORS

## **TWO-PHASE XENON DETECTORS**

### S1: prompt scintillation signal

- High scintillation yield: ~60 ph/keV (ER, 0 field)
- Scintillation light: 175 nm (VUV)
- Nuclear recoil threshold ~few keV

### S2: delayed ionisation signal

- Electroluminescence in vapour phase
- Sensitive to single ionisation electrons
- Nuclear recoil threshold <1 keV</p>

### S1+S2 event by event

- ER/NR discrimination (~99.9% rejection)
- mm resolution + high density: self-shielding of external backgrounds

### Liquid xenon nucleus as a WIMP target

- − SI sensitivity benefits from large A<sup>2</sup> enhancement; broad mass coverage  $\gtrsim$ 5 GeV
- Odd-neutron isotopes (<sup>129</sup>Xe, <sup>131</sup>Xe) enable SD sensitivity (~1/2 of natural abundance)



## LARGE UNDERGROUND XENON EXPERIMENT





### **LOW-ENERGY SIGNALS**





### **SELF-SHIELDING IN NOBLE LIQUIDS**





### **ANTICOINCIDENCE DETECTOR AROUND TARGET**



### **PRESENT STATUS**



### TRENDS



### TRENDS



### LUX-ZEPLIN (LZ) – COMING SOON TO A MINE NEAR YOU







### LUX-ZEPLIN (LZ) – COMING SOON TO A MINE NEAR YOU







### **TODAY'S CONCLUSIONS**

- Direct dark matter searches mostly involve ultra-low background experiments with very low energy thresholds operating deep underground
- The experimental challenge: searching for rare signals at low energies is hard
- Many instrumental and environmental backgrounds need to be controlled, leaving ultimately "physics backgrounds" from neutrino interactions
- Many experiments and technologies are searching for DM all around the world. Multi-tonne noble liquid detectors approaching neutrino floor in the next decade

- Exercise class this afternoon: how to work from a scattering rate observed in a detector target through to a WIMP-nucleon cross section result
- Read ahead from Lewin & Smith if not possible

### **BACKUP SLIDES**

### **COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING**





### **COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING**

