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DIRECT DM DETECTION – OUTLINE

1a. The dark matter landscape
– The big picture

– Dark matter candidates

1b. Weakly Interacting Massive Particles
– Thermal relics: the WIMP paradigm

– Our own (galactic) WIMPs

2. How to catch a WIMP
– Direct detection strategies

– The experimental challenge

– Detector technologies

4. Exercises – This afternoon

2H. Araújo



HOW TO CATCH A WIMP
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• Focus on WIMPs: stable, neutral, cold, massive particles, 

interacting via gravity – and hopefully via the weak force

• WIMPs can solve the DM problem in all its glory:

astrophysical, cosmological and particle physics
H. Araújo
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HOW TO CATCH A WIMP
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1.Direct detection (scattering XS)

• Nuclear recoils from elastic scattering

• Rate, A- & J-dependence, annual modulation, directionality

• Particle mass (if not too heavy)

• Maybe some astrophysical parameters (𝑣𝑒𝑠𝑐)?

2.Indirect detection (decay, annihilation XS)
• High-energy cosmic-rays, g-rays, neutrinos, etc.

• Over-dense regions, annihilation signal  n2

• Very challenging backgrounds

3.Accelerator searches (production XS)
• MET, mono-X, dark photons, etc.

• Mass measurement may be poor at least initially

• Can it establish that new particle is the DM?
H. Araújo
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WIMP-NUCLEUS ELASTIC SCATTERING RATES

The ‘spherical cow’ galactic model
• DM halo is 3-dimensional, stationary, has no lumps

• Isothermal sphere with density profile  ∝ r −2

• Local density 𝜌0~ 0.3 GeV/cm3

Maxwellian (truncated) velocity distribution, 𝑓(𝑣)
• Characteristic velocity 𝑣0 = 220 km/s

• Escape velocity 𝑣𝑒𝑠𝑐 = 544 km/s

• Earth velocity 𝑣𝐸 = 230 km/s
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Nuclear recoil energy spectrum [events/kg/day/keV]
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NUCLEAR FORM FACTOR, F2(q)

6H. Araújo

The FF accounts for the finite nuclear size: for higher momentum transfer, when 

λ = ℎ/𝑞 becomes smaller than the nuclear radius, the scattering XS decreases

• F(q) is the Fourier transform of a spherically symmetric 

ground-state mass distribution normalised so that F(0) = 1

• Mass distribution approximated by charge distribution

• Since 𝐸𝑅 = 𝑞2/2𝑚𝑇, we can express it as 𝐹2(𝐸𝑅) instead



(SPIN-INDEPENDENT) SCATTERING RATES
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En = neutron energy (lab)

ER = recoil energy (lab)

A = mass of target

Q = scattering angle (CM)

q = recoil angle (lab)En

ER

En’

q

incoming

neutron

nuclear

recoil

laboratory frame

En E0

ER

En’

Q
incoming

neutron

nuclear

recoil

centre-of-mass frame

Generally, for a (non-relativistic) projectile with mass m and kinetic energy Ei

hitting a target with mass M, the recoil energy is given by

defining                              

ANALOGY: NEUTRON ELASTIC SCATTERING
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𝐸𝑅 = 𝐸𝑛
2𝐴

(𝐴 + 1)2
1 − cosΘ 𝐸𝑅 = 𝐸𝑛

4𝐴

(𝐴 + 1)2
cos2 𝛼 𝐸𝑅,𝑚𝑎𝑥 = 𝐸𝑛

4𝐴

(𝐴 + 1)2

𝐸𝑅 = 𝐸𝑖
4𝑚𝑀

(𝑚 +𝑀)2
cos2 𝛼 𝑟 =

4𝑚𝑀

(𝑚 +𝑀)2
𝐸𝑅,𝑚𝑎𝑥 = 𝑟 𝐸𝑖
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ANALOGY: NEUTRON ELASTIC SCATTERING

• Kinematic factor peaks at 𝑟 = 1 when projectile and target have the same mass

– In this case, the projectile transfers all its energy for head-on collisions

– Heavier nuclei for heavier WIMPs, lighter nuclei for lighter WIMPs

– Also why hydrogenated materials are best at moderating neutrons

• Calibration of WIMP targets

– For 100 GeV WIMPs, a Xe target is well calibrated by MeV neutrons

– Sources of MeV neutrons: Am-Be (a,n), Cf-252 fission, D-D generators

– Signal and calibration maximum energies:

9

1 MeV neutron → 𝐸𝑅,𝑚𝑎𝑥 = 30 keV220 km/s WIMP → 𝐸𝑅,𝑚𝑎𝑥 = 30 keV

𝐸𝑅,𝑚𝑎𝑥 = 𝑟 𝐸𝜒 ~ 𝐸𝜒 𝐸𝑅,𝑚𝑎𝑥 = 𝑟 𝐸𝑛 ~ 0.03 𝐸𝑛

100 GeV WIMP on xenon (A~131) MeV neutron on xenon

H. Araújo

Neutrons: 

Good NR calibration 

but that means also 

good NR background…



More complete approach:

non-relativistic EFT

11 operators for exchange of 

spin-0 or spin-1 mediators

6 independent responses

contribute to amplitude

(Fitzpatrick, Haxton, Anand, et al: 

1203.3542, 1405.6690)

WIMP-NUCLEON ELASTIC SCATTERING XS

• Coupling to p and n more useful than coupling to nucleus

• Compare different targets materials, collider searches, indirect searches,…

• Spin-independent (scalar) interaction

– Note A2 enhancement (coherence) – more sensitive search

• Spin-dependent (axial-vector) interaction

– Note J (nuclear spin) replaces A2 enhancement – less sensitive

– Some targets more sensitive to proton, others to neutron scattering
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WIMP-NUCLEON ELASTIC SCATTERING XS

H. Araújo 11

90% CL 

upper limit

3 “evidence”

region (claim)

Neutrino

“floor”



ANNUAL MODULATION

• Galactic rotation through stationary halo: “The Earth bathes in a WIMP wind”

• Modulation phase can differ for different targets

• Any seasonal effects will have opposite polarity in the Southern hemisphere

• DAMA modulation has finally been ruled out with the same target material

12

DAMA/NaI + DAMA/LIBRA

9 effect
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𝑣𝐸 = 230 km/s + 15 km/s × cos
2𝜋(𝑡 − 𝑡𝑝)

1 yr



DIRECTIONAL DETECTION

• Effective background discrimination: signal from fixed point in the sky (Cygnus)

• Difficult to achieve large target masses with a gas (needed for directionality)

• Would require very large detectors – but R&D and concrete plans exist

H. Araújo 13



• Consider 1 kg detector target,

sensitive to very low energies

• Expected WIMP interaction rates 
– 0.001−0.000,000,001 events/day

• However…

• Radioactivity and cosmic rays
– >1,000,000 events/day

• Neutrons are a fatal background!
– Several events/day

14

1 kg
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g
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WIMP

BUILDING A WIMP DETECTOR
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BUILDING A WIMP DETECTOR

• Move deep underground

• Select radio-pure materials

• Shield against external g-rays

• Shield against external neutrons

• ‘Veto’ internal neutrons

• Discriminate between 

‘nuclear recoils’ and ‘electron recoils’

15

WIMP
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THE EXPERIMENTAL CHALLENGE

H. Araújo 16

• Low-energy detection is easy ;)
o Several technologies allow sub-keV NR detection

• Rare event searches are also easy ;)
o Not a problem at >100 MeV, think neutrinos

• But doing both is hard!

• Large mass gives exposure & self-shielding

• Hard to collect signal ‘carriers’ (threshold)

• And – there is no trigger…

Key detector requirements

• Large mass x time (~tonne∙yr)

• Low ER threshold (~keV)

• Low NR background (~0 in ROI)

• ER/NR discrimination

http://free-extras.com/images/homer_and_beer-1089.htm
http://free-extras.com/images/homer_and_beer-1089.htm


BACKGROUNDS

• Nuclear recoils – same signature, possibly irreducible

– Neutrons from (a,n) reactions and spontaneous fission from U/Th trace contamination

• Local environment, shields, vessels, components, target material itself

– Nuclear recoils from alpha decay (e.g. radon daughter plate-out)

• Contaminating detector surfaces

– High energy neutrons from atmospheric muon spallation

• Difficult to shield completely even underground

– Eventually, coherent neutrino-nucleus scattering

• Electron recoils – discrimination power is finite

– Gamma-ray background external to target

• U/Th, K-40, Cs-137, from environment, shields, vessels, components

– Contamination in target bulk and detector surfaces

• U/Th betas and gammas (Pb-214, Bi-214, Pb-210,…)

• Cosmogenic (Ar-39, Ge-68, Ge-71,…), anthropogenic (Kr-85, Cs-137,…)

– Eventually, elastic scattering of solar pp neutrinos off electrons

H. Araújo 17



NEUTRINOS AND MORE NEUTRINOS…

• Two neutrino processes trying to spoil the party for next-generation experiments

• But these are also interesting physics signals in their own right

• Neutrino-electron elastic scattering

– Solar pp neutrinos will dominate ER background in the best experiments

– Flat-(ish) ER spectrum at low energy, can discriminate from NR

– Interesting physics? Maybe, if we could measure this at % level or better

• Coherent neutrino-nucleus scattering

– Several neutrino fluxes produce very low energy NR events which eventually will limit us

– Single scatters, uniformly distributed, recoil spectrum looks like WIMPs

– Interesting physics? Yes.

H. Araújo 18

𝝂 + 𝒆− ⟶ 𝝂+ 𝒆−

𝝂 + 𝑨 ⟶ 𝝂+ 𝑨



CEnNS OBSERVED IN 2017!

H. Araújo 19

Coherence condition 𝑞𝑅 ≲ 1

Translates to 𝐸𝜈 ≲ 50 MeV

~ keV



Heat & Ionisation 
Bolometers

Targets: Ge,Si

CDMS, EDELWEISS,

SuperCDMS

cryogenic (<50 mK)

Light & Heat Bolometers

Targets: CaWO4, BGO, Al2O3

CRESST, ROSEBUD

cryogenic (<50 mK)

Light & Ionisation 
Detectors

Targets: Xe, Ar

ArDM, Argo, LUX, WARP, 
DarkSide, DARWIN, Panda-X, 

XENON, ZEPLIN, LZ
cold (LN2)

ionisation
Q

WIMP SEARCH TECHNOLOGY ZOO

H. Araújo 20

Scintillators

Targets: NaI, Xe, Ar

ANAIS, MiniCLEAN, DAMA, 

ZEPLIN-I, DEAP-3600, DM-ICE, 
KIMS, LIBRA, PICOLON, NAIAD, 

SABRE, XMASS

Ionisation Detectors

Targets: Ge, Si, CS2, CdTe

CoGeNT, CDEX, D3, DAMIC, DRIFT, 
DM-TPC, GENIUS, IGEX, MIMAC, 

NEWAGE, NEWS, TREX

Bolometers

Targets: Ge, Si, Al2O3, TeO2

CRESST-I, CUORE, CUORICINO

Bubbles & Droplets

CF3Br, CF3I, C3F8, C4F10

COUPP, PICASSO, PICO, 
SIMPLE



CRYOGENIC DETECTORS

21

C

E
T  max

Thermal signal lost with increasing mass: 

ideally, collect phonons before they thermalise

T0~10-50 mK

Superconducting Transition-Edge Sensor (CDMS)

Phonon channel: ~keV threshold, no quenching

Can collect a second signature for discrimination:

• Phonons + ionisation (e.g. CDMS, EDELWEISS)

• Phonons + scintillation (e.g. CRESST)

EDELWEISS DETECTORS

CRESST DETECTORS

S-CDMS DETECTORS

H. Araújo



TWO-PHASE XENON DETECTORS

S1: prompt scintillation signal

– High scintillation yield: ~60 ph/keV (ER, 0 field)

– Scintillation light: 175 nm (VUV)

– Nuclear recoil threshold ~few keV

S2: delayed ionisation signal

– Electroluminescence in vapour phase

– Sensitive to single ionisation electrons

– Nuclear recoil threshold <1 keV

S1+S2 event by event

– ER/NR discrimination (~99.9% rejection)

– mm resolution + high density: self-shielding of external backgrounds

Liquid xenon nucleus as a WIMP target
– SI sensitivity benefits from large A2 enhancement; broad mass coverage ≳5 GeV

– Odd-neutron isotopes (129Xe, 131Xe) enable SD sensitivity (~1/2 of natural abundance)
22H. Araújo



LARGE UNDERGROUND XENON EXPERIMENT

23H. Araújo

250 kg 

LXe



LOW-ENERGY SIGNALS
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← 3.5 keV electron interaction

This event: S1 and S2 signals, 

plus single response quanta 

in the S1 and S2 channels

(single photoelectrons 

and single electrons)

SE

S2

S1

SE

S2

S1

Single electron

distribution

H. Araújo
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SELF-SHIELDING IN NOBLE LIQUIDS

H. Araújo 25

Liquid

xenon

=3 g/cm3

S1
S2

S2
S2

S2



ANTICOINCIDENCE DETECTOR AROUND TARGET
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Liquid Scintillator

veto

make

thin!

LXe
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PRESENT STATUS
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1987
Ahlen et al

~3 decades of effort

>5 decades in sensitivity



TRENDS
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SIZE (x TIME)

MATTERS

THRESHOLD &

ATOMIC MASS



TRENDS
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NOBLE

LIQUIDS

CRYOGENIC

CRYSTALS



LUX-ZEPLIN (LZ) – COMING SOON TO A MINE NEAR YOU

H. Araújo 30



LUX-ZEPLIN (LZ) – COMING SOON TO A MINE NEAR YOU
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TODAY’S CONCLUSIONS

• Direct dark matter searches mostly involve ultra-low background experiments 
with very low energy thresholds operating deep underground

• The experimental challenge: searching for rare signals at low energies is hard

• Many instrumental and environmental backgrounds need to be controlled, 
leaving ultimately “physics backgrounds” from neutrino interactions

• Many experiments and technologies are searching for DM all around the world. 
Multi-tonne noble liquid detectors approaching neutrino floor in the next decade

• Exercise class this afternoon: how to work from a scattering rate observed in a 
detector target through to a WIMP-nucleon cross section result

• Read ahead from Lewin & Smith if not possible

32H. Araújo



BACKUP SLIDES
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COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING
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XENON



COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING
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