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" Neural networks

@ 10'! neurons
@ 10 synapses

@ Learning:
modifying synapses
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" Brief history of artificial neural networks

@ 1943: W. McCulloch and W. Pitts explore capabilities of networks of
simple neurons

@ 1958: F. Rosenblatt introduces perceptron (single neuron with
adjustable weights and threshold activation function)

@ 1969: M. Minsky and S. Papert prove limitations of perceptron
(linear separation only) and (wrongly) conjecture that multi-layered
perceptrons have same limitations
= ANN research almost abandoned in 1970s!!!

@ 1986: Rumelhart, Hinton and Williams introduce “backward
propagation of errors”: solves (partially) multi-layered learning
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_+ Single neuron

@ Remember linear separation (Fisher discriminant):
AX)=w-x=>"" 1 wixi + wp

@ Boundary at A\(x) =0

@ Replace threshold boundary by sigmoid (or tanh):

(Trexp(x)
T

@ o: activation function (neuron activity)
@ Neuron behaviour completely controlled by weights w = {wg, ..., w,}

@ Training: minimisation of error/loss function (quadratic deviations,
entropy [maximum likelihood]), via gradient descent or stochastic
approximation

Yann Coadou (CPPM) — Machine learning (part II) IDPASC School, online, 8 Sep 2021 59/104



" Neural networks

Universal approximation theorem

Let o(.) be a non-constant, bounded, and monotone-increasing continuous
function. Let C(l,) denote the space of continuous functions on the
n-dimensional hypercube. Then, for any given function f € C(l,) and

€ > 0 there exists an integer M and sets of real constants w;, w;; where
i=1,...,nandj=1,..., M such that

M n
y(x,w) = Z wjo (Z WiiXi + W0j>
j=1 i=1

is an approximation of f(.), that is |y(x) — f(x)| < e.
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eural networks

nterpretation

@ You can approximate any continuous function to arbitrary precision
with a linear combination of sigmoids

@ Corollary 1: can approximate any continuous function with neurons!
@ Corollary 2: a single hidden layer is enough

@ Corollary 3: a linear output neuron is enough

Multilayer perceptron: feedforward network

hidden units

@ Neurons organised in layers —’” o

@ Output of one layer becomes input
to next layer

M
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" Neural network training

OE
w;

Training means minimising error function E(w)

= ZnN:1 —(t" — y(”))xj(") with target t(") (0 or 1), so t(") — y(")

is the error on event n

All events at once (batch learning):

weights updated all at once after processing the entire training sample
finds the actual steepest descent

takes more time

usually: mini-batches (send events by batches)

new training events: need to restart training from scratch

@ or one-by-one (online learning):

@ One

incremental learning: new training events included as they come
speeds up learning

may avoid local minima with stochastic component in minimisation
careful: depends on the order of training events

epoch: going through the entire training data once
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_+ Backpropagation

@ Training means minimising error
function E(w)

@ For single neuron: j_vi =(y — t)xk

@ One can show that for a network:

dE

—— = 0;z;, where

dWJ','
0k = (yk — tx) for output neurons
5] xX Z ijék otherwise

k

@ Hence errors are propagated backwards
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" Neural network overtraining

@ Diverging weights can cause overfitting
o Mitigate by:
o early stopping (after a fixed number of epochs)
@ monitoring error on test sample
o regularisation, introducing a “weight decay” term to penalise large
weights, preventing overfitting. For instance L2-regularisation:

E(w) = E(w) + 5 > w?
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*Regularisation

10 hidden nodes 10 hidden nodes and o = 0.0
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@ Much less overfitting, better generalisation properties
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" Neural networks: Tricks of the trade @EfasmsseEw

Preprocess data:

o if relevant, provide e.g. x/y instead of x and y

o subtract the mean because the sigmoid derivative becomes negligible
very fast (so, input mean close to 0)

e normalise variances (close to 1)

o shuffle training sample (order matters in online training)

Initial random weights should be small to avoid saturation

°
@ Regularise weights to minimise overtraining

@ Make sure the training sample covers the full parameter space
°

No rule (not even guestimates) about the number of hidden nodes
(unless using constructive algorithm, adding resources as needed)

A single hidden layer is enough for all purposes, but multiple hidden
layers may allow for a solution with fewer parameters
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-Adding a hidden layer

4-5 o
2-10-2-1 network

2-20-1 network (55 parameters)

(81 parameters)
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Deep learning

What is learning?

@ Ability to learn underlying and previously unknown structure from
examples
= capture variations

@ Deep learning: have several hidden layers (> 2) in a neural network

Motivation for deep learning

@ Inspired by the brain (esp. visual cortex)

@ Humans organise ideas hierarchically, through composition of simpler
ideas

@ Heavily unsupervised training, learning simpler tasks first, then
combining into more abstract ones

@ Learn first order features from raw inputs, then patterns in first order
features, then etc.

v
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Deep learning revolution

Deep networks were unattractive

@ One layer theoretically enough for everything
@ Used to perform worse than shallow networks with 1 or 2 hidden layers
o Apparently difficult/impossible to train (using random initial weights
and supervised learning with backpropagation)
@ Backpropagation issues:
o requires labelled data (usually scarce and expensive)
o does not scale well, getting stuck in local minima
e ‘“vanishing gradient”: gradients getting very small further away from
output = early layers do not learn much, can even penalise overall
performance
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Deep learning revolution

Deep networks were unattractive

@ One layer theoretically enough for everything
@ Used to perform worse than shallow networks with 1 or 2 hidden layers
o Apparently difficult/impossible to train (using random initial weights
and supervised learning with backpropagation)
Backpropagation issues:
o requires labelled data (usually scarce and expensive)
o does not scale well, getting stuck in local minima
e ‘“vanishing gradient”: gradients getting very small further away from
output = early layers do not learn much, can even penalise overall
performance

Breakthroughs around 2006 (Bengio, Hinton, LeCun)

Train each layer independently

@ Can use unlabelled data (a lot of it)
@ New activation functions

@ Possible thanks to algorithmic innovations, computing resources, data!)
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Example Optimisation hypothesis

@ Stacked denoising auto-encoders
@ 10 million handwritten digits

@ First 2.5 million used for
unsupervised pre-trainin

3—layer net, budget of 10000000 iteratiohs

—©— 0 unsupervised + 10000000 supervised
—§— 2500000 unsupervised + 7500000 supervise

Online classification error

3 B 5 6 7 8 9 10
Number of examples seen x10°

@ Worse with supervision: eliminates
projections of data not useful for
local cost but helpful for deep
model cost

o 1 2

@ Training one layer at a time
scales well

@ Backpropagation from sensible
features

@ Better local minimum than
random initialisation, local
search around it

Overfitting /regularisation

hypothesis

@ More info in inputs than labels

@ No need for final discriminant
to discover features

@ Fine-tuning only at category
boundaries

<
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" Rectified linear unit ReLU

@ One of reasons for vanishing gradient: sigmoid samoid ;:
activation — e
e tiny non-varying derivative away from zero of
@ Solution: non-saturating function A
@ Simplest case: rectified linear unit ReLU % @ 2 o0 3 4 ¢

@ Other variants: leaky ReLU, shifted ReLU (SReLU), exponential linear
unit (ELU), etc.
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" Rectified linear unit ReLU

@ One of reasons for vanishing gradient: sigmoid =~ somose ™ o
activation e
e tiny non-varying derivative away from zero od.
@ Solution: non-saturating function _/:-\
@ Simplest case: rectified linear unit ReLU L

@ Other variants: leaky ReLU, shifted ReLU (SReLU), exponential linear
unit (ELU), etc.
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" Rectified linear unit ReLU

@ One of reasons for vanishing gradient: sigmoid =~ sorose ™ o
activation e
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" Rectified linear unit ReLU

@ One of reasons for vanishing gradient: sigmoid =~ somose ™ o
activation e
e tiny non-varying derivative away from zero o
@ Solution: non-saturating function _//:-\
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Rectified linear unit RelLU

@ One of reasons for vanishing gradient: sigmoid =~ somoee ** .
activation I
e tiny non-varying derivative away from zero od:
@ Solution: non-saturating function A
@ Simplest case: rectified linear unit ReLU o0 24

@ Other variants: leaky ReLU, shifted ReLU (SReLU), exponential linear
unit (ELU), etc.
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" Rectified linear unit ReLU
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activation Ry
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" Rectified linear unit ReLU
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" Rectified linear unit ReLU
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" Rectified linear unit ReLU

@ One of reasons for vanishing gradient: sigmoid o someido i: o
activation e
e tiny non-varying derivative away from zero od.
@ Solution: non-saturating function _/:\
@ Simplest case: rectified linear unit ReLU AL
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" Rectified linear unit ReLU
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" Rectified linear unit ReLU
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" Rectified linear unit ReLU

@ One of reasons for vanishing gradient: sigmoid - samaido ;: T
activation o
e tiny non-varying derivative away from zero 9.4:'
@ Solution: non-saturating function _/f\
@ Simplest case: rectified linear unit ReLU oo 20z e

@ Other variants: leaky ReLU, shifted ReLU (SReLU), exponential linear
unit (ELU), etc.

©G. Louppe
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@ Many possible network structures
@ Moving away from feature engineering to model design
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" Convolutional networks (CNN)

@ Images are stationary: can learn feature
in one part and apply it in another
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_+" Convolutional networks (CNN)

@ Images are stationary: can learn feature

in one part and apply it in another 1/1/1/0]|0
@ Use e.g. small patch sampled randomly, | Qg 1 1,/21[0 4
learn feature, convolve with full image 0)0/1j1|1
0|0|1|1(0
0oj1|1/0(0
Convolved
Image Feature
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_+" Convolutional networks (CNN)

@ Images are stationary: can learn feature

in one part and apply it in another 1(1/1|0|0
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_+" Convolutional networks (CNN)

@ Images are stationary: can learn feature
in one part and apply it in another

@ Use e.g. small patch sampled randomly,
learn feature, convolve with full image

@ Build several “feature maps”

Yann Coadou (CPPM) — Machine learning (part II)
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" Convolutional networks (CNN)

@ Images are stationary: can learn feature layer m-| hidden layer m
in one part and apply it in another

@ Use e.g. small patch sampled randomly,
learn feature, convolve with full image

o Wil

@ Build several “feature maps”

@ Stack them with pooling IayersLayer3

256@6x6 Layer 4
256@1x1 Output
101

Layer 1
, 64x75x75  Layer2
input 64@14x14
83x83

/

/
9x9 1
9x9 10x10 pooli i
- x10 pooling,  convolution 6x6 pooling
convolution x5 subsampling (4096 kernels)
(64 kernels) 4x4 subsamp
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~ Learning feature hierarchy

Raw data Low-level features Mid-level features High-level features
ASNINE V] DEACEISS [
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- Recurrent neural networks (RNN)

@ Many problems require processing a sequence
o sequence classification

o text analysis (“sentiment analysis”)
o DNA sequencing
@ action selection

e sequence synthesis

@ text synthesis
@ music/video

@ sequence translation

@ speech recognition
@ translation

@ Usually variable length sequences (number of words/ notes/ frames/
etc.)

@ Use a recurrent model, maintaining a recurrent state updated after
each step
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*Recurrent neural networks

% _eee

\\ W (1) ® (t+1) €) \\
§ W — h® — h ~-. h )
Unﬁmd ‘“~—' -
v Jv v
X x(t-l) x(t) x(tﬂ)

o Keeps information from earlier frames while processing (variable-size)
sequence

@ Could also be bi-directional, consuming sequence in both directions
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Recurrent neural networks

Unfold

X X

o Keeps information from earlier frames while processing (variable-size)
sequence

@ Could also be bi-directional, consuming sequence in both directions

o Issue: early frames diluted over sequence = memory loss
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Recurrent neural networks

900

h“,"’") B _) h® , e ____," hr \l
A\

Unfold ‘“~—/ TU TU TU 4

y
X X

Keeps information from earlier frames while processing (variable-size)
sequence

@ Could also be bi-directional, consuming sequence in both directions

Issue: early frames diluted over sequence = memory loss
Introducing long short-term memory (LSTM) networks

o using forget gate to regulate information flow
o also possible with gated recurrent units (GRU)
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" Auto-encoders

Approximate the identity function 2000 reconstructed counts

@ Build a network whose output is I
similar to its input 500 neurons
@ Sounds trivial? Except if imposing 1

constraints on network (e.g., # of
neurons, locally connected network)

250 neurons

to discover interesting structures 1
@ Can be viewed as lossy compression
of input ) 1T
Finding similar books 250 neurons
@ Get count of 2000 most common T
words per book 500 neurons
@ “Compress’ to 10 numbers T

2000 word counts
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Auto-encoders

With principle component analysis With autoencoder
European Community

( P CA) Interbank Markets Monetary/Economic

Disasters and
Accidents

Leading Ecnomic
Indicators :

Government
Accounts/ Borrowings

Earnings ) ki

» more in backup
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~*Domain adaptation and adversarial training

o Typical training
e signal and background from simulation

o results compared to real data to make measurement
@ Requires good data—simulation agreement

oL
0L, Oy
00y 00, @
E> E> E> E class label y

J

Y
label predictor Gy (-;6y)

!
T
Iy
7
I

feature extra}gtor Gy(-505)

oL,
30,

. forwardprop  backprop (and produced derivatives) |
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~*Domain adaptation and adversarial training

o Typical training
e signal and background from simulation

o results compared to real data to make measurement
@ Requires good data—simulation agreement
@ Possibility to use adversarial training and domain adaptation to
account for discrepancies/systematic uncertainties

oL
8L, Y
00y 00, @

g E> E> class label y
DA NP UR|E
=]
&\ /
Y
oL, = label predictor Gy(-;8,)
% —NG50, domain classifier G4(+;04)
003( N Y ! /{;3 3
feature extractor G¢(-;0;) 4, % %
e ¥ |:> |:> ) domain label d

oL,
30

. forwardprop  backprop (and produced derivatives) |

DL ——Closs LD

004
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Classification Instance
+ Localization

Classification Object Detection

Segmentation
R gt

CAT, DOG, DUCK CAT, DOG, DUCK

- AN J
YT YT

Single object Multiple objects

@ More and more granularity
@ More objects, in real time on videol/video2/video3
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+Google DeepMind: arcade games @iEEEESHIEED

Learning to play 49 different Atari 2600 games
No knowledge of the goals/rules, just 84x84 pixel frames

°
°
@ 60 frames per second, 50 million frames (38 days of game experience)
@ Deep convolutional network with reinforcement: DQN (deep
Q-network)
o action-value function Q"(s,a)= meE[rt+“/rr+1+“/2Tt+z+ o se=s,a;=a, 7]
e maximum sum of rewards r; discounted by ~ at each timestep t,
achievable by a behaviour policy m = P(a|s), after making observation
s and taking action a

Tricks for scalability and performance:

o experience replay (use past frames)
o separate network to generate learning targets (iterative update of Q)

Outperforms all previous algorithms, and professional human player
on most games
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http://doi.org/10.1038/nature14236

Algorithm 1: deep Q-learning with experience replay.

Video Pinbal |
Initialize replay memory D to capacity N B EO:;HQ‘_ 1707% ]
reakout
Initialize action-value function Q with random weights 0 Star Gunner | S
ST . : ) i 3 — k] I
Initialize target action-value function Q with weights 6~ = 0 ROZE:.‘:: = —
For episode =1,Mdo Crazy gxﬁ:;::;':_—
PP _ - ck | —
;nmetxllzel s;q;ence s;={x1} and preprocessed sequence ¢, = ¢(s) oemon, 2:;:: —— =
ort=1,T do Kl -
) " ) peso | Se—
With probability ¢ select a random action a, Road Runner | EEXIM—
7 — . |z —
otherwise select a, =argmax, Q(¢(s;),a; 0) s —
Execute action a, in emulator and observe reward r, and image x, ;. ; Termis :=
Set §;.41 =5¢,a;,X; 41 and preprocess ¢, | = (s¢41) Spa:;nva;:,s: P .
L ) m Fider | R —
Store transition (¢,,a,.7,4,,,) in D Tutankham | ize
Sample random minibatch of transitions ((/7],aj,r/,¢l 4 1) from D Kong o eser i_—
Time Pilot
7 if episode terminates at step j+1 Tenero ]
Sety;= . _ Fishing Derby
i , /. i Up and Dx
7j+7 max, Q((ﬁjﬂ,a ;0 ) otherwise b ancDown I
. 2 Q'bert | e —
Perform a gradient descent step on (yj — Q(d)},a): 9) ) with respect to the HERO. ] ol At human-level or above
network parametersﬁ Satto s - Below human-fovel
Every C steps reset 0=Q cmp:;‘fg’:ﬂfxﬁ
Centiped
End For Sark ot
End For River Raid
Zaxxon
Amid
. 2 "Nion
@ What about Breakout or Space invaders? e
Double Dunk

Bowling
P evic
Rt
Frostits
Gravtar
Prvate e
Montezuma's Revenge )
-_— )
5 0 20 w0 a0 s0 e om 4500
See also AlphaGo/AlphaZero in
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Trying to tackle scientific problem
@ Goal: predict 3D structure of protein based solely
on genetic sequence

@ Using DNN to predict

o distances between pairs of amino acids

o angles between chemical bonds
@ Search DB to find matching existing substructures
Also train a generative NN to invent new fragments
@ Achieved best prediction ever

Protein Sequence

SQETRKKCTEMKKKFKNCEVRCDESNHCVEVRCSDTK

b .’ Predictions
T1037 / 6vr4d T1049 / 6y4f
score |\ 90.7 GDT 93.3 GDT
= (RNA polymerase domain) (adhesin tip)
l Gradient Descent

Structure ®Experimental result
® Computational prediction
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https://deepmind.com/blog/alphafold
https://deepmind.com/blog/article/putting-the-power-of-alphafold-into-the-worlds-hands

DeepMind AlphaStar

@ Mastering real-time strategy game StarCraft Il
@ Challenges in game theory (no single best strategy), imperfect information (hidden
parts of game), long term planning, real time (continuous flow of actions), large
action space (many units/buildings) 3 ;
@ Using DNN trained
o directly on raw data games
@ supervised learning on human games
o reinforcement learning (continuous league)
@ DNN output: list of actions
@ Trained for 14 days; each agent: up to 200 years of real-time play
@ Runs on single desktop GPU
@ Defeated 5-0 one of best pro-players

8098 Moan APM

[ Aphastar ] [ mana ]
277 390 AlphaStar

7000

Goa0

Estimated MMR

2000

000

5 3 & & 5 10 12 1 ] E] 1008 1588 2600
Training Days Actions Per Minute (APM)
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' Deep networks at work
@ Playing poker

o Libratus (Al developed by Carnegie Mellon University) defeated four of

the world's best professional poker players (Jan 2017 @EEEIEIETITD)
o After 120,000 hands of Heads-up, No-Limit Texas Hold'em, led the

pros by a collective $1,766,250 in chips
o Learned to bluff, and win with incomplete information and opponents’

misinformation
o Lip reading CEETEEIIEEYEIaT)

o human professional: deciphers less than 25% of spoken words
o CNN+LSTM trained on television news programs: 50%

@ Limitation: adversarial attacks CaeRaEiai el ey

. @ left: correctly classified image

@ middle: difference between left image and
adversarial image (x10)

-.- @ right: adversarial image, classified as ostrich
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https://arxiv.org/abs/1705.02955
https://arxiv.org/abs/1611.05358
https://arxiv.org/abs/1312.6199

" Adversarial attack: what

------- Task decision boundary

Model decision boundary

$8 Test point for class 1

$8 Adversarial example for class 1

Yann Coadou (CPPM) — Machine learning (part I1)

is happening?

23 Training points for class 1

@ Training points for class 2

@ Test point for class 2

@ Adversarial example for class 2
IDPASC School, online, 8 Sep 2021

» Breaking things easy, Papernot and Goodfellow, 2016
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http://www.cleverhans.io/security/privacy/ml/2016/12/16/breaking-things-is-easy.html

Adversarial attacks » Cisse et al arXiv:1707.05373

original semantic segmentation framework
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https://arxiv.org/abs/1707.05373

Adversarial attacks » Cisse et al arXiv:1707.05373

original semantic segmentation framework adversarial attack

Yann Coadou (CPPM) — Machine learning (part II) IDPASC School, online, 8 Sep 2021 87/104


https://arxiv.org/abs/1707.05373

Adversarial attacks » Cisse et al arXiv:1707.05373

original semantic segmentation framework adversarial attack compromised semantic segmentation framework
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- Adversarial attacks

» Cisse et al arXiv:1707.05373

Fropeney (1)
[r—

Tine )

(a) a great saint saint francis zaviour (b) i great sinkt shink t frimsuss avir

Figure 7: The model models’ output for each of the spectrograms is located at the bottom of each
spectrogram. The target transcription is: A Great Saint Saint Francis Xavier.
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Data Science @

Bridging High-Energy Physics and MachineLearning communities

9 -13 November 2015, CERN

, e
/

4

Local Organising Committee

ttp://cern.ch/DataScienceLHC2015

http://opendata.cern.ch
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_+"Machine learning and particle physics

Data Science @

Bridging High-Energy Physics and Machine Learning communities

Exploring the potential for Machine Learning on ATLAS

ATLAS Maoachine Learning

Workshop
29"-31** March 2016, CERN / A

http:// EEEECERNANANT
http://opendata.cern.ch
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_+Machine learning and particle physics

Data Science @

Bridging High-Energy Physics and Machine Learning communities

Exploring the potential for Machine Learning on ATLAS

,» HTLAS Machine Learning
/¢ Wlarkshop

T ™
M Y & ol
L Lund, Swedel
\
i’

2016
http://opendata.cern.ch
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_+Machine learning and particle physics

L]
Data Science @
Bridging High-Energy Physics and MachineLearning communities
Exploring th 5 -
Higas ] the HiggsML challenge
: May to September 2014 —
/ / n TL“ | When High Energy Physics meets Machine Learning r n l n q
/U Warke

g on ATLAS

http://opendata.cern.ch
IDPASC School, online, 8 Sep 2021
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Machine learning and particle physics

Data Science @

Bridging High-Energy Physics and Machine Learning communities

HigasH the HiggsML challenge

challenge

/ / n TL“ E May to September 2014 r n i n q

/U I.I.II:II-I_.E 1 Hi ics meets Machine Learning

Exploring th g on ATLAS

AN
\‘ P~ Monday December 05 -- Saturday December 10, 2016
NN S——_/ Centre Conv B B SPAIN @
\\\\r =, Centre Convencions Internacional Barcelona, Barcelona SPAI
S ]

7
2016 Pricing » | Registration 2016 »

Program  Schedule~  Barcelona~

Books ~

View Earlier Meetings » || 2015 Workshop Videos »

Tutorials

The tutorial times and rooms have not
been set yet. View the list of tutorials
using the button below.

View Tutorials »

http://opendata.cern.ch
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“Machine learning and particle physics

Data Science @

Bridging High-Energy Physics and MachineLearning communities
Exploring th 5 - g on ATLAS
Higas ] the HiggsML challenge
n T Ln : May to September 2014 — q
/ / When High Energy Physics meets Machine Learning r n I n
/U lJJl:lrI—:

$25,000
Prize Money

High Efergy Physics pamcletzagkmg mé\

(@) CERN - 656 teams 6 g lo Ny

Tutorials

The tutorial times and rooms have not
been set yet. View the list of tutorials
usmg the button below.

http://opendata.cern.ch
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_+*Machine learning and particle physics

Date of paper

1954 2021

> https://inspirehep.net/literature?q=machine learning or deep learning or multivariate

Up-to-date comprehensive review of papers

» https://github.com/iml-wg/HEPML-LivingReview
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" Machine learning and particle physics

Raw Sparsified Reco Select Physics Ana
le7 le4 100-ish* 50 10 1

@ Reduce data dimensionality to allow analysis
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“Machine learning and particle physics

Raw Sparsified Reco Select Physics Ana
le7 le4 100-ish* 50 10 1

@ Reduce data dimensionality to allow analysis

@ Going to lower level features

=3 T T
c T T T T T
5 1 £ ]
s kol
T 09 - )
o« 0.8] — o 08— 4
° T
c c
S o7 R ]
e o ———-. DN loshilevel (AUC=0.88)
D 08— Womieel o0y B S 06— B
S o5l i S - DN lo-level (AUC-088)
o 3
04l —— NN revel (AUG-078) B [ —— Moo AUC-081)
0al 7 R [ DN hievel (AUG=0.80)
—— NNlolevel (AUC=0.73) ——— NN hievel (AUC=0.78)
02| g 02— 4
. . , L ! — NNloevel (AUC-073) j;
0z 04 06 08 1 . . . i
Signal efficiency o 02 04 06 08 1

Signal efficiency

Yann Coadou (CPPM) — Machine learning (part II) IDPASC School, online, 8 Sep 2021 90/104


http://arxiv.org/abs/1402.4735

_+*Machine learning and particle physics

@ Transforming inputs into images

?

£ 150~

2 —— Mass+t,,
Super Cells & --- mass+AR

o

g —T,#AR

2100 — Maxout

@

@ — Convnet

- Random

50

Correlation of with - —
81 oV 035 G 015021 82 04 0.6 0.8

Signal Efficiency

[Transformed] Azimuthal Angle (6)
o
Pearson Corriation Coeficient

o5 00 o5
[Transtormed) Pseudorapiaty (n)
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https://arxiv.org/abs/1511.05190

- Machine learning and particle physics

@ Looking for new physics scenario
with unknown mass
= one NN for each mass point
6=06a

X1
:@)—fam X2)
X2

0=6»

X1
:@—ﬁ,(xmﬂ
X2

Yann Coadou (CPPM) — Machine learning (part I1)

0.004

my =500
my =750
my =1000
my =1250
my =1500

0.003 |-

grooon

0.002

Fraction of events/50 GeV

0.001

0.000

500 1000 1500 2000 2500
My, [GeV]
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https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-016-4099-4
https://arxiv.org/abs/1601.07913

- Machine learning and particle physics

@ Looking for new physics scenario
with unknown mass
= one NN for each mass point

6=0a
X1
Sa(xX1,x2)
X2
7
X1
G=0p Sxx2,0)
x2
X1
Sh(x1,x2)
X2

@ Parameterised NN

» arXiv:1601.07913

@ mass as training parameter
e as good as dedicated training
o generalises better

Yann Coadou (CPPM) — Machine learning (part I1)

» EPJC (2016) 76:235

0.004

3 Background
1 my =500
0.003| 1 my =750
1 myx =1000
my =1250
 —

0.002 my =1500

Fraction of events/50 GeV

0.001

0.000
o 500 1000 1500 2000 2500 3000

My, [GEV]

(8}
=}
4 ’
[ B2
/
’
o6l »—= Parameterized NN (mass is a feature| |
,’ - Network trained on all masses
» = Network trained at mass=1000 only
0.5 n n n
500 750 1000 1250 1500

Mass of signal
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_+*Machine learning and particle physics

Fast simulation with generative models

@ Heavy CPU cost of simulation
(> 50% of grid resources)
o MC stats becoming limiting
factor in analyses

@ Replace “full simulation” with
approximation

o already routinely done, using
parameterisation of showers or
library of pre-simulated objects

A

use GAN to simulate

medium-range hadrons in ATLAS

Yann Coadou (CPPM) — Machine learning (part II)

Real / Fake
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https://arxiv.org/abs/2109.02551

‘Machine learning and particle physics

Anomaly detection: looking for new physics
@ Learn background (SM) properties
o Flag deviations from prediction without knowing anything about
specific new physics scenario

Penalised anomaly detection Gaussian processes
@ based on Gaussian mixture model @ Learn background with GP instead
@ fs and fg: finite sums of Gaussians of parametric model
@ semi-supervised training @ Compare data to new GP:
@ penalty term in LH to select background model-+signal
variables @ Returns parameters of “peak”

Rdot =267

£
s E o, (it

G b component sl

gl Cresemwemmier |
. r

20 W 750
4 ul GP residuals.

B T T - R b 3
E1 My [TeV]

1 3
Mg [TeV]
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" Machine learning and systematics

@ No particular rule

o ML algorithm output can be considered as any other cut variable
(just more powerful). Evaluate systematics by:

e varying cut value
@ retraining
o calibrating, etc.

@ Most common (and appropriate): propagate other uncertainties
(detector, theory, etc.) up to ML algorithm ouput and check how
much the analysis is affected

@ More and more common: profiling.

Watch out:
o ML algorithm output powerful
o signal region (high ML algorithm output) probably low statistics
= potential recipe for disaster if modelling is not good

@ May require extra systematics, not so much on technique itself, but
because it probes specific corners of phase space and/or wider
parameter space (usually loosening pre-ML selection cuts)
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" Deep learning: looking forward

@ Very active field of research in machine learning and artificial
intelligence

e not just at universities (Google, Facebook, Microsoft, NVIDIA, etc...)
@ Training with curriculum:

o what humans do over 20 years, or even a lifetime

o learn different concepts at different times

@ solve easier or smoothed version first, and gradually consider less
smoothing

o exploit previously learned concepts to ease learning of new abstractions

@ Combination of deep learning and reinforcement learning
o still in its infancy, but already impressive results
@ Domain adaptation and adversarial training

e e.g. train in parallel network that produces difficult examples
o learn discrimination (s vs. b) and difference between training and
application samples (e.g. Monte Carlo simulation and real data)

o Getting popular: graph networks
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‘NeurlPS2019: Hidden information

Pre: g the Politics of an Image Using Webly Supervised Data
Original Reconst. Far left Far right Original Reconst. Far left Far right igil . Far left Far right

II
%

Projector

™~
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https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=13531
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=14353

_+* Conclusion

@ Many techniques and tools exist to achieve optimal discrimination

@ (Un)fortunately, no one method can be shown to outperform the
others in all cases

@ One should try several and pick the best one for any given problem

@ Latest machine learning algorithms (e.g. deep networks) require
enormous hyperparameter space optimisation. . .

@ Machine learning and multivariate techniques are at work in your
everyday life without your knowning and can easily outsmart you for
many tasks

@ Try this to convince yourself

Upcoming reference book (recently read final proofs)
Artificial Intelligence for High Energy Physics
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https://doi.org/10.1142/12200

eep networks and art

@ Computer dreams
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https://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://github.com/google/deepdream
http://facestyle.org
http://dcgi.fel.cvut.cz/home/sykorad/facestyle.html

» arXiv:1703.10593 » github

Summary

Monet 7_ Photos Summer £ Winter

Zebras {_ Horses

zebra —) horse

horse — zebra

Photograph Van Gogh — Cezann Ukiyo-e
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https://arxiv.org/abs/1703.10593
https://junyanz.github.io/CycleGAN/

- CycleGAN T3 10583 gt

Photo enhancement
lnput Output
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- CycleG A N » arXiv:1703.10593 » github @

CPPM
) i
Failure 9
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" References IV: deep neural networks
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https://arxiv.org/abs/1903.10563

- Beyond the standard slides

Backup |
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_+ Long short-term memory (LSTM)

Recurrent state split in two parts

o cell state ¢;
@ output state h;

Forget gate f; to erase cell state info

Input gate j; to update cell state info

Output gate o¢ to select OUtpUt state
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" Recurrent neural networks examples

Labelling imag

1.Input 2. Convolutional 3, RNN with attention 4. Word by
Image  Feature Extraction over the image word . . . K
generation A woman is throwing a frisbee in a park.
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=+ Recurrent neural networks examples

Labelling images

14x14 Feature Map

1. Input
Image

2. Convolutional

Feature Extraction over the image

3. RNN With‘attention 4, Word by

word
generation A woman is throwing a frisbee in a park.

b-jet tagging in ATLAS experime

—3% tracks

b hadron

impact
parameter

do_

|
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" Recurrent neural networks examples

Labelling images

L. Input 2. Convolutional 3, RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation A woman is throwing a frisbee in a park.

T T T T
10l ATLAS Simulation Preliminary

15=13 TeV, 1t — MV2¢c10
p,>20 GeV, nl<25 - RNNIP

o 1P3D
sVt
Fully Connected

light-jet rejection, 1/g,

+
SoftMax 10?

I Loyl Liiond
6.6 065 07 075 08 085 09 095 1
Jet b-jet efficiency, ¢,
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Sparse auto-encoder

@ Sparsity: try to have low activation of neurons (like in the brain)
o Compute average activation of each hidden unit over training set

@ Add constraint to cost function to make average lower than some
value close to 0

v
Denoising auto-encoder

@ Stochastically corrupt inputs

@ Train to reconstruct
uncorrupted input

Locally connected auto-encoder

@ Allow hidden units to connect only to small subset of input units

@ Useful with increasing number of input features (e.g., bigger image)

@ Inspired by biology: visual system has localised receptive fields

v

Yann Coadou (CPPM) — Machine learnii IDPASC School, online, 8 Sep 2021 124/104




-+ Google DeepMind: mastering Go @HEREsTEENEGE)

o Game of Go considered very challenging for Al

@ Board games: can be solved with search tree of b possible sequences
of moves (b = breadth [number of legal moves|, d = depth [length of
game])

@ Chess: b~ 35, d =80 — go: b~ 250, d ~ 150

@ Reduction:

o of depth by position evaluation (replace subtree by approximation that
predicts outcome)

o of breadth by sampling actions from probability distribution (policy
p(als)) over possible moves a in position s

@ 19 x 19 image, represented by CNN

@ Supervised learning policy network from expert human moves,
reinforcement learning policy network on self-play (adjusts policy
towards winning the game), value network that predicts winner of
games in self-play.
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" Google DeepMind: AlphaGo

@ AlphaGo: 40 search threads, simulations on 48 CPUs, policy and value
networks on 8 GPUs. Distributed AlphaGo: 1020 CPUs, 176 GPUs

@ AlphaGo won 494/495 games against other programs (and still 77% against
Crazy Stone with four handicap stones)

3,500

@ Fan Hui: 2013/14/15 European champion -
@ Distributed AlphaGo won 5-0 -

2,000

Elo Rating

1,500

@ AlphaGo evaluated thousands of times fewer
positions than Deep Blue (first chess computer .
to bit human world champion) = better ol
position selection (policy network) and better
evaluation (value network)

1,000

@ Then played Lee Sedol (top Go play in the world over last decade) in March
2016 = won 4-1. AlphaGo given honorary professional ninth dan,
considered to have “reach a level ‘close to the territory of divinity’ "

@ Ke Jie (Chinese world #1): “Bring it on!". May 2017: 3-0 win for AlphaGo.
New comment: “| feel like his game is more and more like the ‘Go god’.
Really, it is brilliant”
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S DeepMind A|phaG0 Zero » Nature 550, 354 (2017)

@ Learn from scratch, just from the rules and random moves
@ Reinforcement learning from self-play, no human data/guidance
@ Combined policy and value networks
@ 4.9 million self-play games
@ Beats AlphaGo Lee (several months of training) after just 36 hours
@ Single machine with four TPU
a b

5,0007 cocmmmmmccccccmoeee. 5,0007

40001 4,0001

3,0004 b
2,0004 £ 3,000
1,000 2!000:
01 — AlphaGo Zero 40 blocks ]
-1,0004 -«« AlphaGo Master 1,000
2,000 -=- AlphaGo Lee 0. I I-
Q

Elo rating
Elo rating

0 5 10 15 20 25 30 35 40 o d‘./\g}o é\?} & <<’§&o°® S \)@o
Days S0 ' WP P & T
N & P & @ P
& v\é‘ & ¥
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D eep M l n d A | pha Ze ro » arXiv:1712.01815 [cs.Al]

@ Same philosophy as AlphaGo Zero, applied to chess, shogi and go

@ Changes:

5000
4000
o 3000
w2000
1000

not just win/loss, but also draw or other outcomes

no additional training data from game symmetries

using always the latest network to generate self-play games rather than
best one

tree search: 80k/70M for chess AlphaZero/Stockfish, 40k/35M for
shogi AlphaZero/Elmo

Chess Shogi Go
< 2 hours
4 hours P —— /_/
8 hours
—— AlphaZero
—— AlphaZero —— AlphaZero —— AlphaGo Zero
—— Stockfish —— Elmo —— AlphaGo Lee

0 t t t { t t t t + + t t t t |
0 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700

Thousands of Steps Thousands of Steps Thousands of Steps
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Machine learning and particle physics

S the HiggsML challenge |l HiggsML challenge

May to September 2014

nge

inegHishErery SRl et e fearming @ Put ATLAS Monte Carlo samples on the web
(H — 77 analysis)

@ Compete for best signal-bkg separation

@ 1785 teams (most popular challenge ever)
@ 35772 uploaded solutions

@ See web site and

y
#  Brank Team Name ¢ mode upiosded nthar Score @ Entries  Last Submission UTC (sesc - Lot s
11 Gabor Melis 70008 380581 110
-tom/c/higgs-boson 1 Tim Salimans $ 40008 3.78913 57
vadar )| Google 1 nhixShaze £ * 20008 3.78682 254
138 ChoKo Team 3.77526 216
15 cheng chen 377384 21
final score 16 quantify 377086 8
- 11 Stanislav Semenov & Co (HSE Yandex) 376211 68
= M 17 Lubo$ Motl's team 3.76050 589
w0 1 Roberto-UCIIM 375864 292
. ) 12 Davut&Josef 3.75838 161
0 s crowwork + 4 HEP meets ML award 371885 94
Free trip to CERN
bl I 1 L ETTLILTTLUE 1148 Eckhard TMVA expert, with TMVA 349045 29
. improvements
PEPEPanen 0 1 Rem. 320423 2

/"\
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