

Dark Matter @ Colliders

Benjamin Fuks

LPTHE / Sorbonne Université

10th IDPASC school

Nazaré (Portugal) - 06-17 September 2021

Dark Matter @ Colliders

Monte Carlo simulations & new physics

- Towards the characterisation of new physics
 - About the nature of an observation
 - \star Fitting (and interpreting) deviations
 - ★ Leading order Monte Carlo tools and techniques good enough
 - Final words on the nature of any potential new physics
 - \star Accurate measurements
 - ★ More precise predictions mandatory

Monte Carlo simulations & new physics

From Lagrangians to events

Simulating new physics is standard

- ✤ 20-25 years of developments ~ LO simulations = bread and butter
- Simulations at the NLO accuracy in QCD can be easily achieved

From Lagrangians to events

From Lagrangians to events

Dark Matter @ Colliders

Monte Carlo simulations for proton collisions

- ✦ Multi-scale problem → factorisation
 - TeV scale: hard scattering (new physics?)
 - *Down to Λ_{QCD} : QCD environment
 - Down to sub-MeV: interactions with a detector

Tools and methods for each step

Monte Carlo simulations for proton collisions

SM and BSM simulations: the status

. =	
	Standard Model simulations under good control
	Relevant LHC processes: known with a very good precision
ļ	Further improvements expected in the next few years

Dark Matter @ Colliders

SM and BSM simulations: the status

Standard Model simulations under good control

- Relevant LHC processes: known with a very good precision
- Further improvements expected in the next few years

A comprehensive approach to MC simulations

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

QCD calculations and Monte Carlo simulations for colliders

QCD 101: predictions at the LHC

• Distribution of an observable ω : the QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{ab} \int \mathrm{d}x_a \,\mathrm{d}x_b \,\mathbf{f}_{a/p_1}(x_a;\mu_F) \,\mathbf{f}_{b/p_2}(x_b;\mu_F) \,\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\omega}(\ldots,\mu_F)$$

- Long distance physics: the parton densities
- * Short distance physics: the differential parton cross section $d\sigma_{ab}$
- * Separation of both regimes \sim the factorisation scale μ_F
 - ★ Choice of the scale ~ theoretical uncertainties

QCD 101: predictions at the LHC

• Distribution of an observable ω : the QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{ab} \int \mathrm{d}x_a \,\mathrm{d}x_b \,\mathbf{f}_{a/p_1}(x_a;\mu_F) \,\mathbf{f}_{b/p_2}(x_b;\mu_F) \,\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\omega}(\ldots,\mu_F)$$

- Long distance physics: the parton densities
- * Short distance physics: the differential parton cross section $d\sigma_{ab}$
- * Separation of both regimes \sim the factorisation scale μ_F
 - \star Choice of the scale \sim theoretical uncertainties

• Short distance physics: the partonic cross section • Order by order in perturbative QCD: $d\sigma = d\sigma^{(0)} + \alpha_s d\sigma^{(1)} + \dots$

★ More orders ~ more precision

 \bigstar Truncation of the series and $\alpha_s \rightsquigarrow$ theoretical uncertainties

Feynman diagrams (depend on the physics model)

Parton densities

100

Parton densities

100

10-1

10-2

х

[NNPDF 3.0 (EPJC'17)]

Parton densities

Direct squared matrix element computations

Extraction of the amplitude from the Feynman rules

$$i\mathcal{M} = ig_{s}^{2} \left[\bar{v}_{2}\gamma^{\mu}u_{1} \right] \frac{\eta_{\mu\nu}}{s} \left[\bar{u}_{3}\gamma^{\nu}v_{4} \right] T_{c_{2}c_{1}}^{a} T_{c_{3}c_{4}}^{a}$$

Direct squared matrix element computations

Extraction of the amplitude from the Feynman rules

$$i\mathcal{M} = ig_s^2 \left[\bar{v}_2 \gamma^{\mu} u_1 \right] \frac{\eta_{\mu\nu}}{s} \left[\bar{u}_3 \gamma^{\nu} v_4 \right] T^a_{c_2c_1} T^a_{c_3c_4}$$

Direct squared matrix element computations Extraction of the amplitude from the Feynman rules $i\mathcal{M} = ig_s^2 \left[\overline{v}_2 \gamma^{\mu} u_1\right] \left[\frac{\eta_{\mu\nu}}{s}\right] \left[\overline{u}_3 \gamma^{\nu} v_4\right] T_{c_2c_1}^a T_{c_3c_4}^a$

u

Propagator

lll

g

Interactions

Particles

Feynman diagram calculations

Direct squared matrix element computations Extraction of the amplitude from the Feynman rules $i\mathcal{M} = ig_s^2 \left[\bar{v}_2 \gamma' u_1 \right] \frac{\eta_{\mu\nu}}{c} \left[\bar{u}_3 \gamma' v_4 \right]$ $T^a_{c_2c_1}T^a_{c_3c_4}$

Direct squared matrix element computations

Extraction of the amplitude from the Feynman rules

$$i\mathcal{M} = ig_s^2 \left[\bar{v}_2 \gamma^{\mu} u_1 \right] \frac{\eta_{\mu\nu}}{s} \left[\bar{u}_3 \gamma^{\nu} v_4 \right] T^a_{c_2 c_1} T^a_{c_3 c_4}$$

- Squaring with the conjugate amplitude
- Algebraic calculation (colour and Lorentz structures)
- Sum/average over the external states

$$\overline{\left|\mathcal{M}\right|^{2}} = \frac{1}{36} \frac{2g_{s}^{4}}{s^{2}} \operatorname{Tr}\left[\not\!\!p_{1}\gamma^{\mu}\not\!\!p_{2}\gamma^{\nu}\right] \left[\not\!\!p_{3}\gamma_{\mu}\not\!\!p_{4}\gamma_{\nu}\right]$$
$$= \frac{16g_{s}^{4}}{9s^{2}} \left[(p_{1} \cdot p_{3})(p_{2} \cdot p_{4}) + (p_{1} \cdot p_{4})(p_{2} \cdot p_{3}) \right]$$

Direct squared matrix element computations

Extraction of the amplitude from the Feynman rules

$$i\mathcal{M} = ig_s^2 \left[\bar{v}_2 \gamma^{\mu} u_1 \right] \frac{\eta_{\mu\nu}}{s} \left[\bar{u}_3 \gamma^{\nu} v_4 \right] T^a_{c_2c_1} T^a_{c_3c_4}$$

- Squaring with the conjugate amplitude
- Algebraic calculation (colour and Lorentz structures)
- Sum/average over the external states

$$\begin{aligned} \left|\mathcal{M}\right|^2 &= \frac{1}{36} \frac{2g_s^4}{s^2} \operatorname{Tr}\left[\not\!\!p_1 \gamma^\mu \not\!\!p_2 \gamma^\nu\right] \left[\not\!\!p_3 \gamma_\mu \not\!\!p_4 \gamma_\nu\right] \\ &= \frac{16g_s^4}{9s^2} \left[(p_1 \cdot p_3)(p_2 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \right] \end{aligned}$$

The number of diagrams increases with the number of final-state particles The complexity rises as N²

Any calculation beyond 2-to-3 becomes a problem

> Helicity amplitudes

- Evaluation of the amplitude for fixed external helicities
- Add all amplitudes (we get complex numbers)
- Squaring
- Sum/average over the external states

External incoming particles (numbers) For fixed helicity and momentum

Dark Matter @ Colliders

- Evaluation of the amplitude for fixed external helicities
- Add all amplitudes (we get complex numbers)
- Squaring
- Sum/average over the external states

Practical example

- I. External incoming particles (numbers) ★ For fixed helicity and momentum
- 2. Wave function of the gluon propagator

- Evaluation of the amplitude for fixed external helicities
- Add all amplitudes (we get complex numbers)
- Squaring
- Sum/average over the external states

Practical example

- I. External incoming particles (numbers) ★ For fixed helicity and momentum
- 2. Wave function of the gluon propagator
- 3. External outgoing particles

Principle

- Evaluation of the amplitude for fixed external helicities
- Add all amplitudes (we get complex numbers)
- Squaring
- Sum/average over the external states

Practical example

- I. External incoming particles (numbers) ★ For fixed helicity and momentum
- 2. Wave function of the gluon propagator
- 3. External outgoing particles
- 4. Full amplitude (complex number)

HELAS

HELAS

Dark matter at colliders

HELAS

Benjamin Fuks - 08.09.2021 - 14

Efficiencies of the methods

	For <i>M</i> diags	For <i>N</i> particles	2 →6 example
Analytical	M2	(N!)²	10 ⁹
Helicity	М	N! 2 ^N	10 ⁷
Recycling	М	(N-1)! 2 ^{N-1}	5x10 ⁵

Observable calculations

The QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b \mathrm{d}\Phi_n \mathbf{f}_{\mathbf{a}/\mathbf{p}_1}(x_a,\mu_F) \, \mathbf{f}_{\mathbf{b}/\mathbf{p}_2}(x_b,\mu_F) \, \left|\mathcal{M}\right|^2 \mathcal{O}_{\omega}(\Phi_n)$$

The evaluation of any observable requires the integral calculation

Observable calculations

The QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b \mathrm{d}\Phi_n \mathbf{f}_{\mathbf{a}/\mathbf{p}_1}(x_a,\mu_F) \, \mathbf{f}_{\mathbf{b}/\mathbf{p}_2}(x_b,\mu_F) \, \left|\mathcal{M}\right|^2 \mathcal{O}_{\omega}(\Phi_n)$$

The evaluation of any observable requires the integral calculation

The phase space ~ highly-dimensional integral (3n-2 integrals = n-body final state)
The phase space structure ~ analytical calculations hopeless

The integrand is a very peaked function (propagators)

Observable calculations

The QCD factorisation theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b \mathrm{d}\Phi_n \mathbf{f}_{\mathbf{a}/\mathbf{p}_1}(x_a,\mu_F) \, \mathbf{f}_{\mathbf{b}/\mathbf{p}_2}(x_b,\mu_F) \, \left|\mathcal{M}\right|^2 \mathcal{O}_{\omega}(\Phi_n)$$

The evaluation of any observable requires the integral calculation

- The phase space ~ highly-dimensional integral (3n-2 integrals = n-body final state)
 The phase space structure ~ analytical calculations hopeless
- The integrand is a very peaked function (propagators)

General and flexible numerical methods ~ Monte Carlo simulations

♦	Accelerat	ed charg:	es radiat	e

Large momentum transfers = lot of radiation

Accelerated charges radiate
 Large momentum transfers = lot of radiation
 QED
 Electrically-charged particles radiate photons
 Photons can split into a (charged) fermion-antifermion pair

Accelerated charges radiate
 Large momentum transfers = lot of radiation
 QED
 Electrically-charged particles radiate photons
 Photons can split into a (charged) fermion-antifermion pair
 QCD is similar, but from the colour charge standpoint
 Quarks can radiate gluons
 Gluons can split into a quark-antiquark or a gluon pair (QCD is non-Abelian)

Accelerated charges radiate Large momentum transfers = lot of radiation • QED Electrically-charged particles radiate photons Photons can split into a (charged) fermion-antifermion pair QCD is similar, but from the colour charge standpoint Quarks can radiate gluons Gluons can split into a quark-antiquark or a gluon pair (QCD is non-Abelian) Highly energetic coloured particles radiate

Each parton is dressed with an arbitrary number of partons (multiple radiation)
 Radiated partons also radiate

• One ends up with a cascade of radiations > parton showers

✦ Generalities

- Perturbative QCD breaks down at scales around I GeV
- Non-perturbative models: from partons to hadrons
 - \star Cannot be computed from first principles

······································		
 Generalities Perturbative QCD breaks down at scales around 1 GeV Non-perturbative models: from partons to hadrons Cannot be computed from first principles 		
 Two main hadronisation models The Lund string model [Andersson, Gustafson, Ingelmanm & Sjöstrand (PR'83)] The cluster model [Webber (NPB'84)] 		
 Hadron decays Thousands of different channels Based on form factors Large uncertainties (the sum of the branching fractions may not be 1) Significant impact on the event shape 		

 Generalities Perturbative QCD breaks down at scales around 1 GeV Non-perturbative models: from partons to hadrons Cannot be computed from first principles
 Two main hadronisation models The Lund string model [Andersson, Gustafson, Ingelmanm & Sjöstrand (PR'83)] The cluster model [Webber (NPB'84)]
 Hadron decays Thousands of different channels Based on form factors Large uncertainties (the sum of the branching fractions may not be 1) Significant impact on the event shape
 Detector simulations and reconstruction (see below) Transfer functions or 'tracks and hits' Pile-up (very relevant for the future)

What about NLO simulations?

To be discussed later

Dark Matter @ Colliders

Outline

New physics and dark matter

Dark matter in cosmology and at colliders

Dark matter is searched for directly, indirectly and at colliders
 This huge experimental effort offers a strategy to constrain models

From dark matter to missing transverse energy

- ✤Unknown partonic centre-of-mass energy √s
 - **\star** Larger \sqrt{s} > heavier new particles
- Unknown longitudinal momenta
 - \star Use of quantities invariant under longitudinal boosts (*p*_T, etc.)

From dark matter to missing transverse energy

Interpretations

From dark matter to missing transverse energy

- •Unknown *partonic* centre-of-mass energy \sqrt{s}
 - \star Larger $\sqrt{s} >$ heavier new particles
- Unknown longitudinal momenta
 - \star Use of quantities invariant under longitudinal boosts (p_T , etc.)

Energy-momentum conservation (in the transverse plane)

- The initial-state total transverse momentum is zero
 - \succ the final-state total p_T is zero
- Invisible particles (DM in particular) = missing momentum
 - \star Weakly interacting and neutral \succ detector is transparent
 - ★ Presence inferred from momentum imbalance

$$\mathbf{E}_T = ||\mathbf{p}_T|| = \left|\left|-\sum_{\text{visible}}\mathbf{p}_T\right|\right|$$

*****Beware: MET \neq DM

- **★** MET could originate from neutral long-lived states, or even neutrinos
- **★** DM may not yield large MET (if light or from a compressed spectrum)

How to detect missing energy?

Detecting missing energy at colliders (I)

Detecting missing energy at colliders (2)

Detecting missing energy at colliders (3)

Missing transverse energy at the LHC: 40 years fast forward
 Searching for a signal with a lot of missing energy
 The missing momentum recoils against visible objects

Dark matter signatures at the LHC

Dark matter signatures at the LHC

Dark matter signatures at the LHC

Almost two decades of mono-X searches...

The mono-X (DM) story is almost 20 years old	
The problem was to trigger on DM signals \rightarrow need for	a visible object
Introduced first as mono-photons in lepton collisions	[Birkedal, Matchev & Perelstein (PRD`04)]
Extension to mono-jets in hadron collisions	[Feng, Su & Takayama (PRL`06)]

Almost two decades of mono-X searches...

Almost two decades of mono-X searches...

New dark signals: mono-top, mono-Z, mono-lepton & mono-Higgs
[Andrea, BF & Maltoni (PRD`II); Bell, Dent, Galea, Jacques, Krauss & Weiler (PRD`I2); Bai & Tait (PLB`I3); Petrov & Shepherd (PLB`I4)]

First experimental studies: CDF, and then ATLAS/CMS

A dark matter search strategy at the LHC

A typical LHC dark matter search strategy

- Requirement of a significant amount of missing transverse energy
- Requirement of a significantly hard visible object (jet, di-lepton pair, photon, etc.)
- *Extra constraints (angular correlations, vetoes, etc.) to reduce the backgrounds
- Cut and count and looking for excess over the backgrounds

A dark matter search strategy at the LHC

A typical LHC dark matter search strategy

- Requirement of a significant amount of missing transverse energy
- Requirement of a significantly hard visible object (jet, di-lepton pair, photon, etc.)
- *Extra constraints (angular correlations, vetoes, etc.) to reduce the backgrounds
- Cut and count and looking for excess over the backgrounds

Backgrounds - the mono-jet case

Invisible Z decays

 → irreducible backgrounds

 W decays with a lost lepton

 → not very frequent but large (total) rate
 → Mis-measurements in multi-jet production
 → rare, but huge QCD total rate
 → steeply falling with the MET value

Outline

An EFT interpretation

Dark Matter @ Colliders

Connecting direct detection and colliders

Direct detection in a nutshell (see H. Araujo's lectures for details)

Cross sections ⇔ nucleon-DM couplings ⇔ nucleon-quark/gluon couplings

Effective field theory approach

 \star LHC constraints on the effective couplings and scale

Constraining direct detection with LHC data

Constraining direct detection with LHC data

Constraining direct detection with LHC data

DM direct detection in a nutshell

[Drees & Nojiri (PRD`93); Hisano, Nagai & Nagata (JHEP`I5)]

Effective field theory to model DM-nucleon interactions

$$\mathcal{L}_{\chi} = f_N \ \bar{\chi} \chi \bar{N} N$$
 or $\mathcal{L}_{\phi} = f_N \ \phi^2 \bar{N} N$ or $\mathcal{L}_X = f_N \ X_{\mu} X^{\mu} \bar{N} N$

 f_N originates from nucleon matrix elements and the underlying new physics

DM direct detection in a nutshell

[Drees & Nojiri (PRD`93); Hisano, Nagai & Nagata (JHEP`I5)]

DM direct detection in a nutshell

[Drees & Nojiri (PRD`93); Hisano, Nagai & Nagata (JHEP`I5)]

Complementary constraints

Complementary constraints

The failure of the EFT interpretation

◆ Using an EFT ◆ Integration out of heavy UV states → relating UV parameters to the EFT scale Λ ◆ Example: s-channel axial-vector mediator Y coupling to a dark matter X $\overbrace{g_{X}, g_{SM}}^{\P} \Rightarrow \frac{C}{\Lambda} \bar{X} \gamma^{\mu} \gamma_{5} X \bar{q} \gamma_{\mu} \gamma_{5} q$ with $\frac{\Lambda}{C} = \frac{m_{Y}}{g_{X} g_{SM}}$

The failure of the EFT interpretation

The failure of the EFT interpretation

Using an EFT \bullet Integration out of heavy UV states \rightarrow relating UV parameters to the EFT scale Λ Example: s-channel axial-vector mediator Y coupling to a dark matter X Х $\Rightarrow \frac{C}{\Lambda} \bar{X} \gamma^{\mu} \gamma_5 X \bar{q} \gamma_{\mu} \gamma_5 q \quad \text{with} \quad \frac{\Lambda}{C} = \frac{m_Y}{q_X q_{\text{SM}}}$ q An ill-defined interpretation 20 Relic density too large m_{Y} is fixed for the EFT to be valid $\rightarrow m_{\gamma} \gg$ typical LHC momentum transfer 15 Theory is nonperturbative Derivation of minimum couplings (red line) /*BX 9*SM \rightarrow from LHC run I mono-jet searches • The mediator is not even a particle ($\Gamma > m_Y$) ★ Large (not extreme) widths interesting too 5 EFT limit applies **Perturbativity issues** for $m_X > 800 \text{ GeV}$ $\Gamma/m_{\rm med} > 1$ \star Predictions unreliable, new techniques needed 0 100 10 1000 m_X [GeV] **Constraints on baroque setups** [Buchmueller, Dolan & McCabe (JHEP`I4)]

Dark Matter @ Colliders

Benjamin Fuks - 08.09.2021 - 36

Dark Matter simplified models

The s-channel case

Dark Matter @ Colliders

Benjamin Fuks - 08.09.2021 - 37

From EFT to simplified model interpretations

From EFT to simplified model interpretations

Simplified dark matter models @ LHC

Simplified dark matter models @ LHC

Benjamin Fuks - 08.09.2021 - 39

Summary

s-channel models at colliders

Summary

s-channel models at colliders

Example: top-philic fermion DM / scalar mediator

Example: top-philic fermion DM / scalar mediator

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

Dark Matter @ Colliders

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

Interpretations

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

Interpretations

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

 $\log_{10}(g_t)$

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

Benjamin Fuks - 08.09.2021 - 42

Interpretations

Details on the simulations

Several key aspects behind the previous results
Simulations at the NLO-QCD accuracy ~ precision predictions
Recasting with public tools
Many ATLAS and CMS searches for new physics
Interpretation within popular frameworks and simplified models
Need for interpretations in all kind of models

Summary

Details on the simulations

Several key aspects behind the previous results

- Simulations at the NLO-QCD accuracy -> precision predictions
- Recasting with public tools
 - \star Many ATLAS and CMS searches for new physics
 - \star Interpretation within popular frameworks and simplified models
 - \star Need for interpretations in all kind of models

A (not too) technical interlude on NLO simulations & LHC recasting Interlude I NLO simulations in a nutshell

A few words on NLO computations

Dissecting an NLO calculation in QCD Three ingredients: the Born, virtual loop and real emission contributions $\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \int_{loop} d^d \ell \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}$ Virtuals: one extra power Reals: one extra power Born of α_s and divergent of α_s and divergent

Dark Matter @ Colliders

Loop calculations

Loop calculations

Loop calculations

Subtraction of the IR divergences

Subtracting the poles

* The structure of the poles is known > subtraction methods

$$\sigma_{NLO} = \int d^4 \Phi_n \ \mathcal{B} + \int d^4 \Phi_{n+1} \left[\mathcal{R} - \mathcal{C} \right] + \int d^4 \Phi_n \left[\int_{\text{loop}} d^d \ell \ \mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right]$$

 $\star \mathcal{C}$ subtracted from the reals \sim finite

 $\star \mathcal{C}$ integrated and added back to the virtuals \sim finite

 \star Integrals can be calculated numerically (and in 4D)

Choice of the subtraction terms

- Must match the infrared structure of the real
- Should be integrable over the one-body phase space conveniently (cf. virtuals)

FKS subtraction

FKS subtraction

Regulators: events and counter-events

Matching with parton showers

- Parton shower
 - Evolution of hard partons to more realistic final states made of hadrons
 - \star Fully exclusive description of the events
 - Resummation of the soft-collinear QCD radiation
 - * Cures various fixed-order instabilities (unweighting, peak-dip structures, etc.)

Matching with parton showers

- Cures various fixed order instabilities (unweighting peak dip stru
 - * Cures various fixed-order instabilities (unweighting, peak-dip structures, etc.)

aMC@NLO simulations

[Frixione, Webber (JHEP'02); Alwall, Frederix, Frixione, Hirschi, Mattelaer, Shao, Stelzer, Torrielli & Zaro (JHEP'14)]

A comprehensive approach to new physics simulations

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Precision simulations at colliders: is it needed?

- Collider simulations at the NLO-QCD easily achieved
 - All previous results include NLO-QCD corrections
 - Are those relevant for DM @ colliders?
 - *****Example: tt+MET at the LHC for $g_X=g_t=4$

Precision simulations at colliders: is it needed?

NLO effects on an exclusion

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

Interlude 2

LHC recasting in a nutshell

Dark Matter @ Colliders

Benjamin Fuks - 08.09.2021 - 54

New physics results at the LHC

LHC = discovery machine

- Many ATLAS and CMS searches for new physics
- Interpretation within popular frameworks and simplified models (SMS)

Simplified Model Spectra (SMS)

The SMS-based reinterpretation framework

- Decomposition of all signatures of a theory into SMS signatures
- * Fiducial cross sections are calculated on the basis of public efficiency maps
- Comparisons to published upper bounds are made

Simplified Model Spectra (SMS)

Dark Matter @ Colliders

Benjamin Fuks - 08.09.2021 - 56

Beyond the SMS approach

Beyond the SMS approach

Public tools to recast new physics searches

 Generic SMS-recast program: SMODELS O(100) available run 1 and 2 analyses ~ largest library t 	oday
Includés prompt and long-lived décays	[Kraml et al. (EPJC'14; LHEP'20)]
Detector circulation becader (curter miced) DELDUES 2	
Detector simulation based on (Customised) DELPHES 3 CHECKMATE 2 [Derks et al. (CPC`17)]	
$\star O(50)$ run 1 and 2 analyses, including some LLP searches	
MADANALYSIS 5 [Dumont, BF, Kraml et al. (EPJC`15); Conte & BF (IJMPA`19)]	
\star O(50) run I and 2 analyses, including I LLP search	
`	
Transfer functions for the detector simulation	
COLLIDERBIT [Balász et al. (EPJC`17)]	
$\star O(40)$ run 1 and 2 analyses	
MADANALYSIS 5 - SFS [Araz, BF & Polykratis (EPJC`21)]	
★3 run 2 analyses	
RIVET [Buckley et al. (2010); Bierlich et al. (SciPost`20)]	
$\star O(30)$ run 1 and 2 analyses	

Validation of the CMS B2G-14-004 search

Search for dark matter in the top-antitop + MET channel Implementation in MADANALYSIS 5

- Validation: comparison of cut-flows and differential distributions
 - * MADANALYSIS 5 predictions vs CMS results [BF & Martini (MA5 Dataverse `16)]

Validation of the CMS B2G-14-004 search

- Validation: comparison of cut-flows and differential distributions
 - ★ MADANALYSIS 5 predictions vs CMS results

[BF & Martini (MA5 Dataverse `16)]

• Constraining ttXX contact interactions ($m_X = I \text{ GeV}$)

Back to DM simplified models

The t-channel case

Dark Matter @ Colliders

Benjamin Fuks - 08.09.2021 - 60

t-channel models at colliders

t-channel models at colliders

Resonance subtraction: generalities

Resonance treatment in practice

[Frixione, BF, Hirschi, Mawatari, Shao, Sunder & Zaro (JHEP`19)]

Resonance treatment in practice

[Frixione, BF, Hirschi, Mawatari, Shao, Sunder & Zaro (JHEP`19)]

Resonance treatment in practice

[Frixione, BF, Hirschi, Mawatari, Shao, Sunder & Zaro (JHEP`19)]

A fivefold signal event generation procedure

A fivefold signal event generation procedure

Is all of this needed (NLO, etc.)?

Recasting ATLAS mono-jet search (36/fb)

CLs exclusion from the best region (I TeV mediator; I 50 GeV DM)

Process	CL_s [LO]	E_T^{miss} constraint	CL_s [NLO]	E_T^{miss} constrtaint	
Total	$75.6^{+10.1}_{-10.5}$ %	$\in [700,800]~{\rm GeV}$	$97.8^{+0.9}_{-1.4}$ %	$\geq 700~{\rm GeV}$	
XX	$0.7^{+0.6}_{-0.6}$ %	$\in [250, 300]~{\rm GeV}$	$3.6^{+0.3}_{-0.6}$ %	$\geq 900~{\rm GeV}$	
XY	$62.7^{+12.3}_{-10.4}$ %	$\in [500,600]~{\rm GeV}$	$83.9^{+2.9}_{-4.3}$ %	$\in [700,800]~{\rm GeV}$	
YY [total]	$24.0^{+3.1}_{-3.1}$ %	$\geq 900~{\rm GeV}$	$58.1^{+2.2}_{-3.1}$ %	$\geq 900 {\rm ~GeV}$	
YY [QCD]	$10.7^{+4.4}_{-2.6}$ %	$\geq 900~{\rm GeV}$	$17.0^{+2.1}_{-2.1}$ %	$\geq 900~{\rm GeV}$	
YY [t-channel]	$29.6^{+3.3}_{-2.6}$ %	$\geq 900~{\rm GeV}$	$38.9^{+1.2}_{-1.8}$ %	$\geq 900~{\rm GeV}$	
[Arina, BF & Mantani (EPJC`20)					

NLO simulations are crucial

- * Modification of the rates (larger yields) and shapes (different best region)
- \star Better control of the theory errors
- Considering all signal components is crucial
 - \star One component alone is not sufficient to exclude the scenario

Ist gen. mediator & Majorana DM

Ist gen. mediator & Majorana DM

More strongly coupled dark matter

More strongly coupled dark matter

$\blacklozenge \lambda = 5$

- *All channels contribute (larger rates) $\star XX \sim \lambda^4$ $\star XY \sim \lambda^2$ $\star YY \sim \lambda^4 + \lambda^2 + \lambda^0$
- Simulations unreliable
 - ★The NWA breaks down
 - $\star \Gamma_Y/M_Y > 10\%$ or compressed spectrum
 - ★Most 'excluded' points inconclusive
- * Γ_Y plays a role for large λ values

More strongly coupled dark matter

$\lambda = 5$

- *All channels contribute (larger rates) $\star XX \sim \lambda^4$ $\star XY \sim \lambda^2$ $\star YY \sim \lambda^4 + \lambda^2 + \lambda^0$
- Simulations unreliable
 - ★The NWA breaks down
 - $\star \Gamma_Y/M_Y > 10\%$ or compressed spectrum
 - ★Most 'excluded' points inconclusive
- * Γ_Y plays a role for large λ values
- Sensitivity to all channels
 - Different jet properties
 - \rightarrow XX: small N_j, mostly soft jets
 - \rightarrow XY: medium $N_{j}, hard \ and \ softer \ jets$
 - \rightarrow YY: large N_j, hard jets
 - Dedicated regions for all cases

Fixed coupling vs fixed width

[Arina, BF, Mantani, Mies, Panizzi & Salko (PLB`20)]

$\lambda = 2 \text{ vs } \Gamma_Y/M_Y = 5\%$

Signal = XX + XY + YY

Regions with 2 very hard jets (SR2j) ~YY production and decay

✤Regions with more not so hard jets (SR4j, SR5j, SR6j) ~ compressed regime

Reliability of the simulations

 \star Fixed Γ_Y/M_Y : compressed spectrum = non-perturbative regime

 \star Fixed λ : split spectrum = broad mediator

Fixed coupling vs fixed width

[Arina, BF, Mantani, Mies, Panizzi & Salko (PLB`20)]

$\lambda = 2 \text{ vs } \Gamma_Y/M_Y = 5\%$

Signal = XX + XY + YY

Regions with 2 very hard jets (SR2j) ~YY production and decay

♣Regions with more not so hard jets (SR4j, SR5j, SR6j) ~ compressed regime

Reliability of the simulations

★ Fixed Γ_Y/M_Y : compressed spectrum = non-perturbativ barogue setups

★ Fixed λ : split spectrum = broad mediator

Dark Matter @ Colliders

Benjamin Fuks - 08.09.2021 - 68

Beyond simplified models

Dark Matter @ Colliders

Benjamin Fuks - 08.09.2021 - 69

Benchmark models

◆ More complex than simplified models
 ◆ A large set of models exist → focus on few benchmarks (e.g. supersymmetry)
 ◆ Dedicated searches for those specific benchmarks
 ★ Simplified models encapsulate characteristics of varied theories

✦ 3 (subjective) examples

- The Higgs portal model (very few parameters a one new state)
- Dilaton-induced DM (very few parameters and two new states)
- Supersymmetry (lots of parameters and new states)
- There are many more: dark photons, axions, etc. (not covered here)

I. The Higgs portal

I. The Higgs portal

2. Dilaton induced DM

2. Dilaton induced DM

3. Supersymmetry (I)

Pair production of heavy states cascade-decaying into leptons, jets and MET Inspiring many simplified model searches Neutralino = typical WIMP candidate Strong limits exist Holes in the SUSY space exist too Specific variables Transverse variables (M₇₂, ...) [GeV] 1600 CMS Preliminarv 137 fb⁻¹ (13 TeV) *Hadronic quantities (H_T, m_{eff}, \ldots) -2012.08600, 2I OS (WZ) --- Expected ಸ್ಟೆ1400 E -SUS-19-012, 2I SS + ≥3I (WZ) Observed SUS-20-003, 11+bb (WH) setc. -SUS-18-004, soft 2/3-lep (WZ) 1200 - SUS-19-012, 2I SS + ≥3I (𝔅𝔅)→I𝔅II, BF(II)=0.5, x=0.5) -SUS-19-012, 2I SS + ≥3I (𝔅[®], →τ̃νττ̃, x=0.5) 1000 800 600 400 200 400 600 800 1000 1200 1400 200 $m_{\tilde{\chi}_{s}^{0}}=m_{\tilde{\chi}_{s}^{*}}$ [GeV] [CMS Moriond Update]

3. Supersymmetry (I)

Pair production of heavy states cascade-decaying into leptons, jets and MET Inspiring many simplified model searches Neutralino = typical WIMP candidate Strong limits exist Holes in the SUSY space exist too Specific variables ✤ Transverse variables (M_{T2}, ...) [Ge√] CMS Preliminarv 137 fb⁻¹ (13 TeV) *Hadronic quantities $(H_T, m_{eff}, ...)$ --- Expected ു∵1400 S-19-012, 2I SS + ≥3I (WZ) Observed Ε SUS-20-003, 11+bb (WH) • etc. SUS-18-004, soft 2/3-lep (WZ) 1200 – SUS-19-012, 2I SS + ≥3I (𝔅 🕄 → I͡v ÎĨ, BF(II)=0.5, x=0.5) -SUS-19-012, 2l SS + ≥3l (ἶξἶζ)→τνττ, x=0.5) 1000 Huge effort towards supersymmetry 800 ✤No sign of it for now... 600 Supersymmetry = proxy for many models 400 \star Rich set of signatures common to other models 200 600 800 1000 1200 200 400 1400 $m_{\tilde{\chi}_{0}} = m_{\tilde{\chi}_{1}} [GeV]$ [CMS Moriond Update]

3. Supersymmetry (I)

Pair production of heavy states cascade-decaying into leptons, jets and MET Inspiring many simplified model searches Neutralino = typical WIMP candidate Strong limits exist Holes in the SUSY space exist too Specific variables ✤ Transverse variables (M_{T2}, ...) [] 1600 CMS Preliminarv 137 fb⁻¹ (13 TeV) *Hadronic quantities $(H_T, m_{eff}, ...)$ ····Expected ു∵1400 S-19-012, 2I SS + ≥3I (WZ) Observed Ε SUS-20-003, 11+bb (WH) • etc. SUS-18-004, soft 2/3-lep (WZ) 1200 – SUS-19-012, 2I SS + ≥3I (𝔅 🕄 → I͡v ÎĨ, BF(II)=0.5, x=0.5) –SUS-19-012, 2ISS + ≥3I (ῖ±̃𝔅→τ̃νττ̃, x=0.5) 1000 Huge effort towards supersymmetry 800 ✤No sign of it for now... 600 Supersymmetry = proxy for many models 400 \star Rich set of signatures common to other models 200 600 800 1000 1200 200 400 1400 Is SUSY ruled out? NO... $m_{\tilde{\chi}_{0}} = m_{\tilde{\chi}_{1}} [GeV]$ But will it ever be? 😀 [CMS Moriond Update]

3. Supersymmetry (2)

Supersymmetry could be non-minimal Left-right SUSY, SUSY VLQ, SUSY GUTs, sneutrino DM, etc. Non-minimal supersymmetry = great playground to test new signals Example: UMSSM (SUSY + Z')

 $pp \to Z' \to \tilde{\chi}^+ \tilde{\chi}^- \to \ell^+ \ell^- + \not\!\!\!E_T$ [Special kinematics due to the Z']

3. Supersymmetry (2)

Dark Matter @ Colliders

Benjamin Fuks - 08.09.2021 - 74

New physics and dark matter

Dark matter is an important motivation for new physics
Galaxy rotation curves, gravitational lensing, cosmic microwave background, ...

- Searched for in a complementary way
 - Dark matter relic abundance must be reproduced
 - Dark matter direct/indirect detection constraints
 - Production at (hadron) colliders

- Many signatures are considered at the LHC
 - From various benchmarks: simplified models, EFTs, UV-complete models

Accurate predictions are necessary for the best conclusions

NLO-QCD computations for BSM are automated

New physics and dark matter

Dark matter is an important motivation for new physics

- *Galaxy rotation curves, gravitational lensing, cosmic microwave background, ...
- Searched for in a complementary way
 - Dark matter relic abundance must be reproduced
 - Dark matter direct/indirect detection constraints
 - Production at (hadron) colliders

- Many signatures are considered at the LHC
 - From various benchmarks: simplified models, EFTs, UV-complete models

Accurate predictions are necessary for the best conclusions

NLO-QCD computations for BSM are automated

A lot of fun is planned for the next decades