
Machine learning

Yann Coadou

with a high energy physicist bias

CPPM Marseille

Online edition, 7 September 2021

Outline

1 Introduction
2 Optimal discrimination
3 Machine learning
4 Quadratic and linear discriminants
5 (Boosted) Decision trees
6 Neural networks
7 Deep neural networks
8 Machine learning and particle physics
9 Conclusion

10 References

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 2/137

Introduction

Typical problems in HEP

Classification of objects

Signal enhancement relative to background

Regression: best estimation of a parameter

lepton energy, Emiss
T value, invariant mass, etc.

Discrimination of signal from background in HEP

Event level (Higgs searches, . . .)

Cone level (tau-vs-jet reconstruction, . . .)

Lifetime and flavour tagging (b-tagging, . . .)

Track level (particle identification, . . .)

Cell level (energy deposit from hard scatter/pileup/noise, . . .)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 3/137

Introduction

Input information from various sources

Kinematic variables (masses, momenta, decay angles, . . .)

Event properties (jet multiplicity, sum of charges, brightness . . .)

Event shape (sphericity, aplanarity, . . .)

Detector response (silicon hits, dE/dx , Cherenkov angle, shower
profiles, muon hits, . . .)

Most data are (highly) multidimensional

Use dependencies between x = {x1, · · · , xn} discriminating variables

Approximate this n-dimensional space with a function f (x) capturing
the essential features

f is a multivariate discriminant

For most of these lectures, use binary classification:

an object belongs to one class (e.g. signal) if f (x) > q, where q is
some threshold,
and to another class (e.g. background) if f (x) ≤ q

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 4/137

Optimal discrimination

Where to place a cut x0 on variable x?

Background density
p(x, B) = p(x|B) p(B)

Signal densitySignal density
p(x, S) = p(x|S) p(S)

x

p
(x

)
=

p(
x
,
S

)
+

p(
x
,
B

)

x
0

Optimal choice: minimum misclassification cost at decision boundary
x = x0

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 5/137

Optimal discrimination: Bayes limit

Bayes discriminant

BD =
CB

CS
=

p(x |S)

p(x |B)
× p(S)

p(B)

CB = background contamination
CS = signal loss

From Bayes theorem (p(A|B)p(B) = p(B|A)p(A)) and sum of
probabilities (p(S |x) + p(B|x) = 1):

p(S |x) =
BD

1 + BD

Bayes limit

p(S |x) = BD/(1 + BD) is what should be achieved to minimise cost
of misclassification, reaching classification with fewest mistakes

Fixing relative cost of background contamination and signal loss
q = CB/(CS + CB), q = p(S |x) defines decision boundary:

signal-rich if p(S |x) ≥ q
background-rich if p(S |x) < q

Any function that approximates conditional class probability p(S |x)
with negligible error reaches the Bayes limit

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 6/137

Optimal discrimination: using a discriminant

How to construct p(S|x)?

k = p(S)/p(B) typically unknown

Problem: p(S |x) depends on k!

Solution: it’s not a problem. . .

Define a multivariate discriminant:

D(x) =
s(x)

s(x) + b(x)
=

p(x |S)

p(x |S) + p(x |B)

Now:

p(S |x) =
D(x)

D(x) +
(
1− D(x)

)
/k

Cutting on D(x) is equivalent to cutting on p(S |x), implying a
corresponding (unknown) cut on p(S |x)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 7/137

Machine learning: learning from examples

Several types of problems

Classification/decision:

signal or background
type Ia supernova or not
will pay his/her credit back on time or not

Regression: estimating a parameter value (energy of a particle,
brightness of a supernova, . . .) [mostly ignored in these lectures]

Clustering (cluster analysis):

in exploratory data mining, finding features

Our goal

Teach a machine to learn the discriminant f (x) using examples from
a training dataset

Be careful to not learn too much the properties of the training sample

no need to memorise the training sample
instead, interested in getting the right answer for new events
⇒ generalisation ability

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 8/137

Machine learning: training
Supervised learning

Training events are labelled: N examples (x , y)1, (x , y)2, . . . , (x , y)N
of (discriminating) feature variables x and class labels y

The learner uses example classes to know how good it is doing

Reinforcement learning

Instead of labels, some sort of reward system (e.g. game score)

Goal: maximise future payoff by optimising decision policy

May not even “learn” anything from data, but remembers what
triggers reward or punishment

Unsupervised learning

e.g. clustering: find similarities in training sample, without having
predefined categories

Discover good internal representation of the input

Not biased by pre-determined classes ⇒ may discover unexpected
features!

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 9/137

Machine learning: training
Supervised learning

Training events are labelled: N examples (x , y)1, (x , y)2, . . . , (x , y)N
of (discriminating) feature variables x and class labels y

The learner uses example classes to know how good it is doing

Reinforcement learning

Instead of labels, some sort of reward system (e.g. game score)

Goal: maximise future payoff by optimising decision policy

May not even “learn” anything from data, but remembers what
triggers reward or punishment

Unsupervised learning

e.g. clustering: find similarities in training sample, without having
predefined categories

Discover good internal representation of the input

Not biased by pre-determined classes ⇒ may discover unexpected
features!

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 9/137

Machine learning: training
Supervised learning

Training events are labelled: N examples (x , y)1, (x , y)2, . . . , (x , y)N
of (discriminating) feature variables x and class labels y

The learner uses example classes to know how good it is doing

Reinforcement learning

Instead of labels, some sort of reward system (e.g. game score)

Goal: maximise future payoff by optimising decision policy

May not even “learn” anything from data, but remembers what
triggers reward or punishment

Unsupervised learning

e.g. clustering: find similarities in training sample, without having
predefined categories

Discover good internal representation of the input

Not biased by pre-determined classes ⇒ may discover unexpected
features!

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 9/137

Finding the multivariate discriminant y = f (x)

Given our N examples (x , y)1, . . . , (x , y)N we need
a function class F =

{
f (x ,w)

}
(w : parameters of prediction to be

found)
a constraint Q(w) on F (regularisation term)
a loss or error function L(y , f), encoding what is lost if f is poorly
chosen in F (i.e., f (x ,w) far from the desired y = f (x))

Cannot minimise L directly (would depend on the dataset used), but
rather its average over a training sample, the empirical risk:

R(w) =
1

N

N∑
i=1

L
(
yi , f (xi ,w)

)
subject to constraint Q(w), so we minimise the cost function:

C (w) = R(w) + λQ(w)

where λ controls the strength of regularisation

At the minimum of C (w) we select f (x ,w∗), our estimate of y = f (x)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 10/137

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Data generated from an unknown function with unknown noise

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 11/137

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Constant least squares fit, RMSE = 0.915

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 11/137

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Linear least squares fit, RMSE = 0.581

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 11/137

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Quadratic least squares fit, RMSE = 0.579

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 11/137

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Cubic least squares fit, RMSE = 0.339

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 11/137

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

PolyH6L least squares fit, RMSE = 0.278

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 11/137

Choice of function class: training

0 1 2 3 4 5 6
0

1

2

3

4

x

y

PolyH9 L least squares fit, RMSE =0

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 11/137

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Data generated from an unknown function with unknown noise

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 12/137

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Const. least squares fit, training RMSE = 0.915, test RMSE = 1.067

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 12/137

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Linear least squares fit, training RMSE = 0.581, test RMSE = 0.734

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 12/137

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Quadr. least squares fit, training RMSE = 0.579, test RMSE = 0.723

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 12/137

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Cubic least squares fit, training RMSE = 0.339, test RMSE = 0.672

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 12/137

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

PolyH6L least squares fit, training RMSE = 0.278, test RMSE = 0.72

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 12/137

Choice of function class: testing

0 1 2 3 4 5 6
0

1

2

3

4

x

y

PolyH9 L least squares fit, training RMSE = 0, test RMSE = 46.424

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 12/137

Choice of function class

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

d

R
M
S
E

Training and test RMSE's for polynomial fits of different degrees

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 13/137

Capacity control and regularisation

Trade-off between approximation error and estimation error

Take into account sample size

Measure (and penalise) complexity

Use independent test sample

In practice, no need to correctly guess the function class, but need
enough flexibility in your model, balanced with complexity cost

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 14/137

Machine learning algorithms

4 Quadratic and linear discriminants

5 (Boosted) Decision trees

6 Neural networks

7 Deep neural networks

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 15/137

Quadratic discriminants: Gaussian problem

Suppose densities s(x) and b(x) are multivariate Gaussians:

Gaussian(x |µ,Σ) =
1√

(2π)n|Σ|
exp

(
− 1

2
(x−µ)T Σ−1(x−µ)

)
with vector of means µ and covariance matrix Σ

Then B(x) = s(x)/b(x) (or its logarithm) can be expressed explicitly:

lnB(x) = λ(x) ≡ χ2(µB ,ΣB)− χ2(µS ,ΣS)

Decision
boundary

with χ2(µ,Σ) = (x − µ)TΣ−1(x − µ)

Fixed value of λ(x) defines
quadratic hypersurface partitioning
n-dimensional space into signal-rich
and background-rich regions

Optimal separation if s(x) and b(x)
are indeed multivariate Gaussians

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 16/137

Quadratic discriminant

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 17/137

Quadratic discriminant

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 17/137

Quadratic discriminant

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 17/137

Quadratic discriminant

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 17/137

Linear discriminant: Fisher’s discriminant

If in λ(x) the same covariance matrix is used for each class (e.g.
Σ = ΣS + ΣB) one gets Fisher’s discriminant:

λ(x) = w · x with w ∝ Σ−1(µS − µB)

w

kxw #"

kxw $"

Optimal linear separation

Works only if signal and background
have different means!

Optimal classifier (reaches the Bayes
limit) for linearly correlated
Gaussian-distributed variables

Extension to non-linear problems:
support vector machines (see backup)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 18/137

(Boosted) Decision trees

x < 1.53

fail pass

fail pass

y < 0.004

fail pass

0.910.13
fail pass

0.29

z < 30

x < 1.8

passfail

y < 0.1
5 (Boosted) Decision trees

Decision trees
Algorithm
Splitting a node
Variable selection

Limitations
Boosted decision trees
Performance examples
BDTs in real physics cases
Software and example code

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 19/137

Introduction

Decision tree origin

Machine-learning technique, widely used in social sciences.
Originally data mining/pattern recognition, then medical diagnosis,
insurance/loan screening, etc.
L. Breiman et al., “Classification and Regression Trees” (1984)

Basic principle

Extend cut-based selection

many (most?) events do not have all characteristics of signal or
background
try not to rule out events failing a particular criterion

Keep events rejected by one criterion and see whether other criteria
could help classify them properly

Binary trees

Trees can be built with branches splitting into many sub-branches

In this lecture: mostly binary trees

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 20/137

Tree building algorithm

Start with all events (signal and background) = first (root) node

sort all events by each variable

for each variable, find splitting value with best separation between
two children

mostly signal in one child
mostly background in the other

select variable and splitting value with best separation, produce two
branches (nodes)

events failing criterion on one side
events passing it on the other

Keep splitting

Now have two new nodes. Repeat algorithm recursively on each node

Can reuse the same variable

Iterate until stopping criterion is reached (min leaf size, max tree
depth, insufficient improvement, perfect classification, etc.)

Splitting stops: terminal node = leaf
Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 21/137

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 22/137

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 22/137

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 22/137

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 22/137

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 22/137

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 22/137

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 22/137

Decision tree output

Run event through tree

Start from root node

Apply first best cut

Go to left or right child node

Apply best cut for this node

...Keep going until...

Event ends up in leaf

DT Output

Purity
(

s
s+b , with weighted events

)
of leaf, close to 1 for signal and 0

for background

or binary answer (discriminant function +1 for signal, −1 or 0 for
background) based on purity above/below specified value (e.g. 1

2) in
leaf

E.g. events with HT < 242 GeV and Mt > 162 GeV have a DT
output of 0.82 or +1

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 23/137

Splitting a node

Optimal split: figure of merit

Decrease of impurity for split s of node t into children tP and tF
(goodness of split): ∆i(s, t) = i(t)− pP · i(tP)− pF · i(tF)

Aim: find split s∗ such that ∆i(s∗, t) = maxs∈{splits}∆i(s, t)

Maximising ∆i(s, t) ≡ minimising overall tree impurity

Common impurity functions

misclassification error
= 1−max(p, 1− p)

(cross) entropy
= −∑i=s,b pi log pi

Gini index (details in backup) signal purity
0 0.2 0.4 0.6 0.8 1

ar
b

it
ra

ry
 u

n
it

0

0.05

0.1

0.15

0.2

0.25

Split criterion

Misclas. error

Entropy

Gini

Also cross section (− s2

s+b) and excess significance (− s2

b)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 24/137

Variable selection I

Reminder

Need model giving good description of data

Playing with variables

Number of variables:

not affected too much by “curse of dimensionality”
CPU consumption scales as nN logN with n variables and N training
events

Variable order does not matter: all variables treated equal

Order of training events is irrelevant (batch training)

Irrelevant variables:

no discriminative power ⇒ not used
only costs a little CPU time, no added noise

Can use continuous and discrete variables, simultaneously

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 25/137

Variable selection I

Reminder

Need model giving good description of data

Playing with variables

Number of variables:

not affected too much by “curse of dimensionality”
CPU consumption scales as nN logN with n variables and N training
events

Variable order does not matter: all variables treated equal

Order of training events is irrelevant (batch training)

Irrelevant variables:

no discriminative power ⇒ not used
only costs a little CPU time, no added noise

Can use continuous and discrete variables, simultaneously

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 25/137

Variable selection II

Transforming input variables

Completely insensitive to replacement of any subset of input variables
by (possibly different) arbitrary strictly monotone functions of them
(same order ⇒ same DT):

convert MeV → GeV
no need to make all variables fit in the same range
no need to regularise variables (e.g. taking the log)

⇒ Some immunity against outliers

Note about actual implementation

The above is strictly true only if testing all possible cut values

If there is some computational optimisation (e.g., check only 20
possible cuts on each variable), it may not work anymore

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 26/137

Variable selection II

Transforming input variables

Completely insensitive to replacement of any subset of input variables
by (possibly different) arbitrary strictly monotone functions of them
(same order ⇒ same DT):

convert MeV → GeV
no need to make all variables fit in the same range
no need to regularise variables (e.g. taking the log)

⇒ Some immunity against outliers

Note about actual implementation

The above is strictly true only if testing all possible cut values

If there is some computational optimisation (e.g., check only 20
possible cuts on each variable), it may not work anymore

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 26/137

Variable selection III

Variable ranking (mean decrease impurity MDI)

Ranking of xi : add up decrease of impurity each time xi is used

Largest decrease of impurity = best variable

Shortcoming: masking of variables

xj may be just a little worse than xi but will never be picked

xj is ranked as irrelevant

But remove xi and xj becomes very relevant
⇒ careful with interpreting ranking (specific to training)

Permutation importance (mean decrease accuracy MDA)

Applicable to any already trained classifier
Randomly shuffle each variable in turn and measure decrease of
performance
Important variable ⇒ big loss of performance
Can also be performed on validation sample
Beware of correlations [Breiman 2001]

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 27/137

Variable selection IV

Choosing variables

Usually try to have as few variables as possible
But difficult: correlations, possibly large number to consider, large
phase space with different properties in different regions
Brute force: with n variables train all n, n − 1, etc. combinations,
pick best
Backward elimination: train with n variables, then train all n − 1
variables trees and pick best one; now train all n − 2 variables trees
starting from the n− 1 variable list; etc. Pick optimal cost-complexity
tree.
Forward greedy selection: start with k = 1 variable, then train all
k + 1 variables trees and pick the best; move to k + 2 variables; etc.

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 28/137

Limitations

x < 1.53

fail pass

fail pass

y < 0.004

fail pass

0.910.13
fail pass

0.29

z < 30

x < 1.8

passfail

y < 0.1
5 (Boosted) Decision trees

Decision trees
Limitations

Training sample composition
Ensemble learning

Boosted decision trees
Performance examples
BDTs in real physics cases
Software and example code

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 29/137

Tree instability: training sample composition

Small changes in sample can lead to very different tree structures
(high variance)

Performance on testing events may be as good, or not

Not optimal to understand data from DT rules

Does not give confidence in result:

DT output distribution discrete by nature
granularity related to tree complexity
tendency to have spikes at certain purity values (or just two delta
functions at ±1 if not using purity)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 30/137

Tree (in)stability: distributed representation

One tree:

one information about event (one leaf)
cannot really generalise to variations not covered in training set (at
most as many leaves as input size)

Many trees:

distributed representation: number of intersections of leaves
exponential in number of trees
many leaves contain the event ⇒ richer description of input pattern

Partition 1

C3=0

C1=1

C2=1

C3=0

C1=0

C2=0

C3=0

C1=0

C2=1

C3=0

C1=1

C2=1

C3=1

C1=1

C2=0

C3=1

C1=1

C2=1

C3=1

C1=0

Partition 3
Partition 2

C2=0

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 31/137

Tree (in)stability solution: averaging

Build several trees and average the output

[Dietterich, 1997]

K-fold cross-validation (good for small samples)

divide training sample L in K subsets of equal size: L =
⋃

k=1..K Lk

Train tree Tk on L − Lk , test on Lk

DT output = 1
K

∑
k=1..K Tk

Bagging, boosting, random forests: ensemble learning

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 32/137

Boosted decision trees

x < 1.53

fail pass

fail pass

y < 0.004

fail pass

0.910.13
fail pass

0.29

z < 30

x < 1.8

passfail

y < 0.1

5 (Boosted) Decision trees
Decision trees
Limitations
Boosted decision trees

Introduction
AdaBoost
Overtraining?
Clues to boosting performance
Gradient boosting

Performance examples
BDTs in real physics cases
Software and example code

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 33/137

Boosting: a brief history

First provable algorithm [Schapire 1990]

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation [Freund 1995]: boost by majority (combining many learners
with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID [MiniBooNe 2005]

D0 claimed first evidence for single top quark production [D0 2006]

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 34/137

Boosting: a brief history

First provable algorithm [Schapire 1990]

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation [Freund 1995]: boost by majority (combining many learners
with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID [MiniBooNe 2005]

D0 claimed first evidence for single top quark production [D0 2006]

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 34/137

Boosting: a brief history

First provable algorithm [Schapire 1990]

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation [Freund 1995]: boost by majority (combining many learners
with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID [MiniBooNe 2005]

D0 claimed first evidence for single top quark production [D0 2006]

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 34/137

AdaBoost [Freund&Schapire 1996]

What is boosting?

General method, not limited to decision trees

Hard to make a very good learner, but easy to make simple,
error-prone ones (but still better than random guessing)

Goal: combine such weak classifiers into a new more stable one, with
smaller error

AdaBoost

Introduced by Freund&Schapire in 1996

Stands for adaptive boosting

Learning procedure adjusts to training data to classify it better

Many variations on the same theme for actual implementation

Usually leads to better results than without boosting

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 35/137

AdaBoost algorithm

Check which events of training sample Tk are misclassified by Tk :

I(X) = 1 if X is true, 0 otherwise
for DT output in {±1}: isMisclassifiedk(i) = I

(
yi × Tk(xi) ≤ 0

)
or isMisclassifiedk(i) = I

(
yi × (Tk(xi)− 0.5) ≤ 0

)
in purity convention

misclassification rate:

R(Tk) = εk =

∑N
i=1 w

k
i × isMisclassifiedk(i)∑N

i=1 w
k
i

Derive tree weight αk = β × ln((1− εk)/εk)

Increase weight of misclassified events in Tk to create Tk+1:

wk
i → wk+1

i = wk
i × eαk

Train Tk+1 on Tk+1

Boosted result of event i :
T (i) =

1∑Ntree
k=1 αk

Ntree∑
k=1

αkTk(i)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 36/137

AdaBoost error rate

Misclassification rate ε on training sample

Can be shown to be bound:
ε ≤

Ntree∏
k=1

2
√
εk(1− εk)

If each tree has εk 6= 0.5 (i.e. better than random guessing):

the error rate falls to zero for sufficiently large Ntree

Corollary: training data is overfitted

Overtraining?

Error rate on test sample may reach a minimum and then potentially
rise. Stop boosting at the minimum.

In principle AdaBoost must overfit training sample

In many cases in literature, no loss of performance due to overtraining

may have to do with fact that successive trees get in general smaller
and smaller weights
trees that lead to overtraining contribute very little to final DT output
on validation sample

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 37/137

Overtraining estimation: good or bad?

e
rr

o
r

ra
te

number of trees/epochs

train

test

best

e
rr

o
r

ra
te

number of trees/epochs

train

test

best

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

interpolation threshold

under-parameterised over-parameterised

“bad” overtraining (overfitting) / “good” overtraining (still underfitting)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 38/137

Training and generalisation error

Clear overtraining, but still better performance after boosting

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 39/137

Cross section significance (s/
√
s + b)

More relevant than testing error

Reaches plateau

Afterwards, boosting does not hurt (just wasted CPU)

Applicable to any other figure of merit of interest for your use case

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 40/137

Clues to boosting performance

First tree is best, others are minor corrections
Specialised trees do not perform well on most events ⇒ decreasing
tree weight and increasing misclassification rate
Last tree is not better evolution of first tree, but rather a pretty bad
DT that only does a good job on few cases that the other trees could
not get right
But adding trees may increase reliability of prediction: margins
explanation [Shapire&Freund 2012]
Double descent risk curve and interpolation regime [Belkin 2019]

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 41/137

Gradient boosting [Friedman 2001]

AdaBoost recast in a statistical framework: corresponds to minimising
an exponential loss

Generalisation: formulate boosting as numerical optimisation
problem, minimise loss function by adding trees using gradient
descent procedure

Procedure:

Build imperfect model Fk at step k (sometimes Fk(x) 6= y)
Improve model: Fk+1(x) = Fk(x) + hk(x) = y , or
residual hk(x) = y − Fk(x)
Train new classifier on residual

Example: mean squared error loss function
LMSE(x , y) = 1

2 (y − Fk(x))2

minimising loss J =
∑

i LMSE(xi , yi) leads to ∂J
∂Fk (xi)

= Fk(xi)− yi

⇒ residual as negative gradient: hk(xi) = yi − Fk(xi) = − ∂J
∂Fk (xi)

Generalised to any differentiable loss function

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 42/137

Performance examples

x < 1.53

fail pass

fail pass

y < 0.004

fail pass

0.910.13
fail pass

0.29

z < 30

x < 1.8

passfail

y < 0.1
5 (Boosted) Decision trees

Decision trees
Limitations
Boosted decision trees
Performance examples

Boosting longer
Overtraining
Control plots

BDTs in real physics cases
Software and example code

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 43/137

Circular correlation

In ROOT using TMVA and create circ macro from
$ROOTSYS/tutorials/tmva/createData.C to generate dataset

Plots: TMVA::TMVAGui("filename");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 44/137

Circular correlation

Boosting longer (TMVA: NTrees)

Compare performance of single DT and BDT with more and more
trees (5 to 400)

All other parameters at TMVA default (would be 400 trees)

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

u
n

d
 r

ej
ec

ti
o

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:

BDT100

BDT50

BDT400

BDT10

BDT5

DT

Background rejection versus Signal efficiency

Single (small) DT: not
so good

More trees ⇒ improve
performance until
saturation

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 45/137

Decision contours

var0
-0.8 -0.4 0 0.4 0.8 1.2

va
r1

-1

-0.5

0

0.5

1

DT

BDT5

BDT10

BDT50

BDT100

BDT400

Note: max tree depth = 3

Single (small) DT: not so
good. Note: a larger tree
would solve this problem

More trees ⇒ improve
performance (less step-like,
closer to optimal
separation) until saturation

Largest BDTs: wiggle a
little around the contour
⇒ picked up features of
training sample, that is,
overtraining

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 46/137

Training/testing output

Better shape with more trees: quasi-continuous

Overtraining because of disagreement between training and testing?
Let’s see. . .

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 47/137

Performance in optimal significance

Best significance actually obtained with last BDT, 400 trees!

But to be fair, equivalent performance with 10 trees already

Less “stepped” output desirable? ⇒ maybe 50 is reasonable

1 10 100
Number of trees

28

28.5

29

29.5

30

30.5

S
ig

n
if
ic

a
n

c
e

Significance vs number of trees

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 48/137

Performance in optimal significance

Best significance actually obtained with last BDT, 400 trees!

But to be fair, equivalent performance with 10 trees already

Less “stepped” output desirable? ⇒ maybe 50 is reasonable

1 10 100
Number of trees

28

28.5

29

29.5

30

30.5

S
ig

n
if
ic

a
n

c
e

Significance vs number of trees

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 48/137

Control plots

Boosting weight decreases fast and stabilises

First trees have small error fractions, then increases towards 0.5
(random guess)

⇒ confirms that best trees are first ones, others are small corrections

boost weight
0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400

450

AdaBooost weight distribution

#tree
0 50 100 150 200 250 300 350 400

b
o

o
st

 w
ei

g
h

t

0

2

4

6

8

10

Boost weights vs tree

#tree
0 50 100 150 200 250 300 350 400

er
ro

r
fr

ac
ti

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

error fraction vs tree number

#tree
0 50 100 150 200 250 300 350 400

#t
re

e
n

o
d

es

0

2

4

6

8

10

12

14

16

18

Nodes before/after pruning

boost weight
0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400

450

AdaBooost weight distribution

#tree
0 50 100 150 200 250 300 350 400

b
o

o
st

 w
ei

g
h

t

0

2

4

6

8

10

Boost weights vs tree

#tree
0 50 100 150 200 250 300 350 400

er
ro

r
fr

ac
ti

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

error fraction vs tree number

#tree
0 50 100 150 200 250 300 350 400

#t
re

e
n

o
d

es

0

2

4

6

8

10

12

14

16

18

Nodes before/after pruning

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 49/137

Other averaging techniques

Bagging (Bootstrap aggregating) [Breiman 1996]

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Applicable to other techniques than DT

tends to produce more stable and better classifier

Random forests [Breiman 2001]

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Often as good as boosting

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 50/137

Other averaging techniques

Bagging (Bootstrap aggregating) [Breiman 1996]

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Applicable to other techniques than DT

tends to produce more stable and better classifier

Random forests [Breiman 2001]

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Often as good as boosting

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 50/137

BDTs in real physics cases

x < 1.53

fail pass

fail pass

y < 0.004

fail pass

0.910.13
fail pass

0.29

z < 30

x < 1.8

passfail

y < 0.1
5 (Boosted) Decision trees

Decision trees
Limitations
Boosted decision trees
Performance examples
BDTs in real physics cases

LHC examples
BDT systematics

Software and example code

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 51/137

BDT in HEP

ATLAS b-tagging in Run 2 Eur. Phys. J. C 79 (2019) 970

Run 1 MV1c: NN trained from output of other
taggers

Run 2 MV2c20: BDT using feature variables of
underlying algorithms and pT, η of jets

Run 2: introduced IBL (new innermost pixel
layer)
⇒ explains part of the performance gain, but
not all

ATLAS tt̄tt̄ production evidence

Eur. Phys. J. C 80 (2020) 1085 arXiv:2007.14858 [hep-ex]

BDT output used in final fit to measure
cross section

Constraints on systematic uncertainties
from profiling 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

BDT score

0

0.5

1

1.5

D
at

a
/ P

re
d.

1−10

1

10

210

310

410

E
ve

nt
s

/ 0
.1

ATLAS
-1 = 13 TeV, 139 fbs

SR
Post-Fit

Data tttt
Wtt Ztt
Htt Q mis-id

Mat. Conv. HF e

*γLow m µHF
Others ttt
Uncertainty

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 52/137

http://dx.doi.org/10.1140/epjc/s10052-019-7450-8
http://dx.doi.org/10.1140/epjc/s10052-020-08509-3
http://arxiv.org/abs/2007.14858

BDT in HEP: CMS H → γγ result

CMS-PAS-HIG-13-001

Hard to use more BDT in an analysis:

vertex selected with BDT

2nd vertex BDT to estimate probability to be within 1cm of
interaction point

photon ID with BDT

photon energy corrected with BDT regression

event-by-event energy uncertainty from another BDT

several BDT to extract signal in different categories

 (GeV)
γγ

Tp
0 50 100 150 200 250

| <
 1

0
m

m
tr

ue
fr

ac
tio

n
|z

 -
 z

0

0.2

0.4

0.6

0.8

1

<PU>=19.9
CMS Preliminary Simulation

 = 125 GeVHm
γγ→H

Photon ID MVA
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s/

0.
02

0

200

400

600

800

1000

1200

 MCγµµ→Z
8TeV Data

 -1 = 8 TeV, L = 19.6 fbsCMS preliminary,

Barrel

 (GeV)γγm
110 120 130 140 150S

/(
S

+
B

)
W

ei
gh

te
d

E
ve

nt
s

/ 1
.5

 G
eV

0

1000

2000

3000

4000

5000
Data
S+B Fit
Bkg Fit Component

σ1 ±
σ2 ±

 (MVA)-1 = 8 TeV, L = 19.6 fbs

 (MVA)-1 = 7 TeV, L = 5.1 fbs

CMS Preliminary

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 53/137

http://cds.cern.ch/record/1530524

BDT in HEP: final state reconstruction

tt̄H(bb̄) reconstruction

Match jets and partons in
high-multiplicity final state

BDT trained on all combinations

New inputs to classification BDT

Access to Higgs pT, origin of b-jets

Phys. Rev. D 97, 072016 (2018)

matched objects

all b+1w ball H btop W hb1 hb2 blt bht wj1 wj2

m
a

tc
h

 f
ra

c
ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
b4l4_recoBDT_basic

b4l4_recoBDT_withH

b4l4_recoBDT_withBTag

ICHEPdefault_recoBDT_basic

ICHEPdefault_recoBDT_withH

ICHEPdefault_recoBDT_withBTag

6ji4bi

85%th
es

is

0 50 100 150 200 250 300 350 400

 [GeV]
T

Reco Higgs p

0

50

100

150

200

250

300

350

400

 [
G

e
V

]
T

 T
ru

th
 H

ig
g
s
 p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

thesis

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 54/137

https://dx.doi.org/10.1103/PhysRevD.97.072016
http://www.theses.fr/s189750
http://www.theses.fr/s189455

BDT and systematics

No particular rule

BDT output can be considered as any other cut variable (just more
powerful). Evaluate systematics by:

varying cut value
retraining
calibrating, etc.

Most common (and appropriate): propagate other uncertainties
(detector, theory, etc.) up to BDT ouput and check how much the
analysis is affected

More and more common: profiling.
Watch out:

BDT output powerful
signal region (high BDT output) probably low statistics
⇒ potential recipe for disaster if modelling is not good

May require extra systematics, not so much on technique itself, but
because it probes specific corners of phase space and/or wider
parameter space (usually loosening pre-BDT selection cuts)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 55/137

Decision trees are not dead! e.g. NeurIPS2019

PIDForest: Anomaly Detection via Partial Identification NeurIPS

A Debiased MDI (Mean Decrease of Impurity) Feature Importance
Measure for Random Forests NeurIPS

MonoForest framework for tree ensemble analysis NeurIPS

Faster Boosting with Smaller Memory (Yoav S Freund) NeurIPS

Minimal Variance Sampling in Stochastic Gradient Boosting NeurIPS

Regularized Gradient Boosting NeurIPS

Partitioning Structure Learning for Segmented Linear Regression
Trees NeurIPS

Random Tessellation Forests NeurIPS

Optimal Sparse Decision Trees NeurIPS

Provably robust boosted decision stumps and trees against adversarial
attacks NeurIPS

Robustness Verification of Tree-based Models NeurIPS

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 56/137

https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=15701
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=13879
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=14311
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=14127
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=14414
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=13676
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=13421
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=13992
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=15880
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=14246
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=14191

Boosted decision tree software

Go for a fully integrated solution

use different multivariate techniques easily
spend your time on understanding your data and model

Examples:

TMVA (Toolkit for MultiVariate Analysis)
Integrated in ROOT, complete manual https://root.cern/tmva

Example code in backup

scikit-learn (python) https://scikit-learn.org

Dedicated to BDT but transparently integrated with e.g. scikit-learn:

XGBoost (popular in HEP) arXiv:1603.02754 https://github.com/dmlc/xgboost

(note: cannot handle negative weights)
LightGBM (Microsoft) https://lightgbm.readthedocs.io

CatBoost (Yandex) https://catboost.ai/

Several examples in IDPASC – ML hands-on session

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 57/137

https://root.cern/tmva
https://scikit-learn.org
http://arxiv.org/abs/1603.02754
https://github.com/dmlc/xgboost
https://lightgbm.readthedocs.io
https://catboost.ai/
https://indico.lip.pt/event/643/timetable/#29-exercises-machine-learning

References I: boosted decision trees

L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and
Regression Trees, Wadsworth, Stamford, 1984

R.E. Schapire, “The strength of weak learnability” Machine Learning 5 (1990) 197

Y. Freund, “Boosting a weak learning algorithm by majority”
Information and computation 121 (1995) 256

Y. Freund and R.E. Schapire, “Experiments with a New Boosting Algorithm” in
Machine Learning: Proceedings of the Thirteenth International Conference, edited
by L. Saitta (Morgan Kaufmann, San Fransisco, 1996) p. 148

Y. Freund and R.E. Schapire, “A short introduction to boosting”
Journal of Japanese Society for Artificial Intelligence 14 (1999) 771

R. E. Schapire and Y. Freund, “Boosting: Foundations and Algorithms”, MIT
Press, 2012.

Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning

and an application to boosting” Journal of Computer and System Sciences 55 (1997) 119

J.H. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a

statistical view of boosting” Annals of Statistics 28 (2000) 377

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 134/137

http://dx.doi.org/10.1023/A:1022648800760
http://dx.doi.org/10.1006/inco.1995.1136
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.5846
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1214/aos/1016218223

References II: boosted decision trees

J. H. Friedman, “Greedy function approximation: A gradient boosting machine”
Annals of Statistics 29 (2001) 1189

T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning:
Data Mining, Inference, and Prediction (2nd edition)” Springer Series in Statistics, 2009

S. Shalev-Shwartz and S. Ben-David, “Understanding Machine Learning: From
Theory to Algorithms” Cambridge University Press, 2014

M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning

practice and the classical bias–variance trade-off” PNAS 116 (2019) 15849 ,
arXiv:1812.11118 [stat.ML]

L. Breiman, “Bagging Predictors” Machine Learning 24 (1996) 123

L. Breiman, “Random forests” Machine Learning 45 (2001) 5

B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor
Nucl. Instr. Meth. A 555 (2005) 370 ; H.-J. Yang, B.P. Roe, and J. Zhu
Nucl. Instr. Meth. A 555 (2005) 370

V. M. Abazov et al. [D0 Collaboration], “Evidence for production of single top

quarks” Phys. Rev. D 78 (2008) 012005

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 135/137

http://dx.doi.org/10.1214/aos/1013203451
https://web.stanford.edu/~hastie/ElemStatLearn/
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
http://dx.doi.org/10.1073/pnas.1903070116
http://arxiv.org/abs/1812.11118
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.nima.2005.09.022
http://dx.doi.org/10.1016/j.nima.2005.09.022
http://dx.doi.org/10.1103/PhysRevD.78.012005

Beyond the standard slides

Backup

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 138/137

Support vector machines

Fisher discriminant: may fail completely for highly non-Gaussian
densities

But linearity is good feature ⇒ try to keep it

Generalising Fisher discriminant: data non-separable in n-dim space
Rn, but better separated if mapped to higher dimension space RH :
h : x ∈ Rn → z ∈ RH

Use hyper-planes to partition higher dim space: f (x) = w · h(x) + b

Example:h : (x1, x2)→ (z1, z2, z3) = (x2
1 ,
√

2x1x2, x
2
2)

x1

x2

z1

z2

z3

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 139/137

Support vector machines: separable data

Consider separable data in RH , and three parallel hyper-planes:
w · h(x) + b = 0 (separating hyper-plane between red and blue)

w · h(x1) + b = +1 (contains h(x1))

w · h(x2) + b = −1 (contains h(x2))

Multivariate Discriminants, Harrison B. Prosper

plane: w.h(x

h(x1)

h(x2)

w

Subtract blue from red:
w ·
(
h(x1)− h(x2)

)
= 2

With unit vector ŵ = w/‖w‖:
ŵ ·
(
h(x1)− h(x2)

)
= 2/‖w‖ = m

Margin m is distance between red and
blue planes

Best separation: maximise margin

⇒ empirical risk margin to minimise:
R(w) ∝ ‖w‖2

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 140/137

Support vector machines: constraints

When minimising R(w), need to keep signal and background
separated

Label red dots y = +1 (“above” red plane) and blue dots y = −1
(“below” blue plane)

Since: w · h(x) + b > 1 for red dots

w · h(x) + b < −1 for blue dots

all correctly classified points will satisfy constraints:

yi
(
w · h(xi) + b

)
≥ 1, ∀i = 1, . . . ,N

Using Lagrange multipliers αi > 0, cost function can be written:

C (w , b, α) =
1

2
‖w‖2 −

N∑
i=1

αi

[
yi
(
w · h(xi) + b

)
− 1
]

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 141/137

Support vector machines

Minimisation

Minimise cost function C (w , b, α) with respect to w and b:

C (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj
(
h(xi) · h(xj)

)
At minimum of C (α), only non-zero αi correspond to points on red
and blue planes: support vectors

Kernel functions

Issues:

need to find h mappings (potentially of infinite dimension)
need to compute scalar products h(xi) · h(xj)

Fortunately h(xi) · h(xj) are equivalent to some kernel function
K (xi , xj) that does the mapping and the scalar product:

C (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi , xj)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 142/137

Support vector machines: example

h : (x1, x2)→ (z1, z2, z3) = (x2
1 ,
√

2x1x2, x
2
2)

h(x) · h(y) = (x2
1 ,
√

2x1x2, x
2
2) · (y2

1 ,
√

2y1y2, y
2
2)

= (x · y)2

= K (x , y)

x1

x2

z1

z2

z3

In reality: do not know a priori the right kernel

⇒ have to test different standard kernels and use the best one

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 143/137

Support vector machines: non-separable data

Even in infinite dimension space, data are often non-separable

Need to relax constraints:

yi
(
w · h(xi) + b

)
≥ 1− ξi

x1

x2

margin

support
vectors

S
ep

ar
ab

le
 d

at
a

optimal hyperplane

N
on

-s
ep

ar
ab

le
 d

at
a

ξ1

ξ2

ξ4

ξ3

with slack variables ξi > 0

C (w , b, α, ξ) depends on ξ,
modified C (α, ξ) as well

Values determined during
minimisation

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 144/137

Splitting a node: Gini index of diversity

Defined for many classes

Gini =
∑i 6=j

i ,j∈{classes} pipj

Statistical interpretation

Assign random object to class i with probability pi .

Probability that it is actually in class j is pj

⇒ Gini = probability of misclassification

For two classes (signal and background)

i = s, b and ps = p = 1− pb

⇒ Gini = 1−∑i=s,b p
2
i = 2p(1− p) = 2sb

(s+b)2

Most popular in DT implementations

Usually similar performance to e.g. entropy

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 145/137

Pruning a tree I

Why prune a tree?

Possible to get a perfect classifier on training events

Mathematically misclassification error can be made as little as wanted

E.g. tree with one class only per leaf (down to 1 event per leaf if
necessary)

Training error is zero

But run new independent events through tree (testing or validation
sample): misclassification is probably > 0, overtraining
Pruning: eliminate subtrees (branches) that seem too specific to
training sample:

a node and all its descendants turn into a leaf

Pruning algorithms

Pre-pruning (early stopping condition like min leaf size, max depth)

Expected error pruning (based on statistical error estimate)

Cost-complexity pruning (penalise “complex” trees with many
nodes/leaves)

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 146/137

Pruning a tree II

Pre-pruning

Stop tree growth during building phase

Already seen: minimum leaf size, minimum separation improvement,
maximum depth, etc.

Careful: early stopping condition may prevent from discovering
further useful splitting

Expected error pruning

Grow full tree

When result from children not significantly different from result of
parent, prune children

Can measure statistical error estimate with binomial error√
p(1− p)/N for node with purity p and N training events

No need for testing sample

Known to be “too aggressive”

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 147/137

Pruning a tree III: cost-complexity pruning

Idea: penalise “complex” trees (many nodes/leaves) and find
compromise between good fit to training data (larger tree) and good
generalisation properties (smaller tree)

With misclassification rate R(T) of subtree T (with NT nodes) of
fully grown tree Tmax :

cost complexity Rα(T) = R(T) + αNT

α = complexity parameter

Minimise Rα(T):

small α: pick Tmax

large α: keep root node only, Tmax fully pruned

First-pass pruning, for terminal nodes tL, tR from split of t:

by construction R(t) ≥ R(tL) + R(tR)
if R(t) = R(tL) + R(tR) prune off tL and tR

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 148/137

Pruning a tree IV: cost-complexity pruning

For node t and subtree Tt :

if t non-terminal, R(t) > R(Tt) by construction
Rα({t}) = Rα(t) = R(t) + α (NT = 1)
if Rα(Tt) < Rα(t) then branch has smaller cost-complexity than single
node and should be kept
at critical α = ρt , node is preferable
to find ρt , solve Rρt (Tt) = Rρt (t), or: ρt =

R(t)− R(Tt)

NT − 1

node with smallest ρt is weakest link and gets pruned
apply recursively till you get to the root node

This generates sequence of decreasing cost-complexity subtrees

Compute their true misclassification rate on validation sample:

will first decrease with cost-complexity
then goes through a minimum and increases again
pick this tree at the minimum as the best pruned tree

Note: best pruned tree may not be optimal in a forest

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 149/137

Introduction to TMVA (ROOT v6.20.06)

TMVA: Toolkit for MultiVariate Analysis
https://root.cern/tmva https://github.com/root-project/root/tree/master/tmva

Written by physicists

In C++ (also python API), integrated in ROOT

Quite complete manual

Includes many different multivariate/machine learning techniques

To compile, add appropriate header files in your code (e.g., #include
"TMVA/Factory.h") and this to your compiler command line:
‘root-config --cflags --libs‘ -lTMVA

More complete examples of code: $ROOTSYS/tutorials/tmva
createData.C macro to make example datasets
classification and regression macros
also includes Keras examples (deep learning)

Sometimes useful performance measures (more in these headers):
#include "TMVA/ROCCalc.h"

TMVA::ROCCalc(TH1* S,TH1* B).GetROCIntegral();

#include "TMVA/Tools.h"

TMVA::gTools().GetSeparation(TH1* S,TH1* B);

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 150/137

https://root.cern/tmva
https://github.com/root-project/root/tree/master/tmva

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 151/137

Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable("var0", &var0);

reader->AddVariable("var1", &var1);

reader->BookMVA("My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA("Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 152/137

https://github.com/lmoneta/tmva-tutorial

Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable("var0", &var0);

reader->AddVariable("var1", &var1);

reader->BookMVA("My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA("Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 152/137

https://github.com/lmoneta/tmva-tutorial

Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable("var0", &var0);

reader->AddVariable("var1", &var1);

reader->BookMVA("My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA("Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 152/137

https://github.com/lmoneta/tmva-tutorial

Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable("var0", &var0);

reader->AddVariable("var1", &var1);

reader->BookMVA("My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA("Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 152/137

https://github.com/lmoneta/tmva-tutorial

Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable("var0", &var0);

reader->AddVariable("var1", &var1);

reader->BookMVA("My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA("Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 152/137

https://github.com/lmoneta/tmva-tutorial

Compiling TMVA with C++

To make code compilable (and MUCH faster)

Need ROOT and TMVA corresponding header files
e.g., for Train.C:

#include "TFile.h"

#include "TTree.h"

#include "TMVA/Factory.h"

#include "TMVA/DataLoader.h"

#include "TMVA/TMVAGui.h"

Need a “main” function
int main() {

Train();

return 0;

}

Compilation:
g++ Train.C ‘root-config --cflags --libs‘ -lTMVA -lTMVAGui -o TMVATrainer

Train.C: file to compile
TMVATrainer: name of executable
-lTMVAGui: just because of TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 153/137

TMVA: training refinements

Common technique: train on even event numbers, test on odd event
numbers (and vice versa)

Can also think of more than two-fold

Achieve in TMVA by replacing:

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

with:

TString trainString = "(eventNumber % 2 == 0)";

TString testString = "!"+trainString;

dataloader->AddTree(sig, "Signal", sigWeight, trainString.Data(), "Training");

dataloader->AddTree(sig, "Signal", sigWeight, testString.Data(), "Test");

dataloader->AddTree(bkg, "Background", bkgWeight, trainString.Data(), "Training");

dataloader->AddTree(bkg, "Background", bkgWeight, testString.Data(), "Test");

Use individual event weights:

string eventWeight = "TMath::Abs(eventWeight)"; //Compute event weight

dataloader->SetSignalWeightExpression(eventWeight);

dataloader->SetBackgroundWeightExpression(eventWeight); //Can differ

Yann Coadou (CPPM) — Machine learning IDPASC School, online, 7 Sep 2021 154/137

