ANTS2

Short introduction

A. Morozov and V.Solovov LIP seminar Lisbon, 24 October 2019

ANTS2: origins

ANTS2: origins

Gamma cameras

ANTS2

- Integrated environment
- Photon tracking in 3D geometry
- Spline LRFs
- MINUIT minimization
- Event filters (cuts)
- Nice GUI (Qt) + Visualization (ROOT)

ANTS2: expansion

- I. We get experimental data! -> Make more realistic simulation and reconstruction to explain/reproduce it
 - Particle tracking
 - Time resolved
 - Wavelength resolved
 - PMT/SiPM and electronics response
 - 2D and 3D LRFs
- II. We get other people interested in it! -> Make it an attractive general-purpose tool
 - JS scripting
 - Python interpreter
 - Geant4 integration
 - Docker containers
 - Distributed ANTS2
 - Project on GitHub

ANTS2 structure (simplified)

Simulation mode

Simulation detector model

- Geometry is based on ROOT geometry model (TGeo)
 - Standard volume types organized into a tree structure with CSG option
 - ANTS2 provides some "syntactic sugar" on top: stacks, groups and arrays
 - Close enough to Geant4 geometry to exchange data via GDML
- Materials
 - Element composition: custom, GDML exchange facility is provided
 - Optical properties
 - Bulk: $n(\lambda)$, $L_{att}(\lambda)$, $L_{scatt}(\lambda)$, $L_{Rayleigh}$
 - Interfaces (overrides): Lambertian, metal, PTFE, WLS
 - Scintillation properties
- Optical sensors
 - Spectral sensitivity, angular and area response, dark counts, single photoelectron response; also saturation and crosstalk for SiPMs
- Electronics and ADC
 - Electronic noise, ADC quantization

Simulation

Reconstruction mode

Reconstruction detector model & LRFs

Light response functions (LRF) $\eta_i(x,y)$, is the probability for a photon isotropically emitted at position (x,y) to be detected by the i-th PMT

Detector model needed for statistical reconstruction is just a set of LRFs:

$$a_i = N\eta_i(x, y)$$

In many practical cases, LRFs have axial symmetry and can be reduced to $\eta_i(r)$ where r is the distance from the i-th PMT axis

Statistical reconstruction in 2D

Reconstruction of event position (x, y) and "brightness" (total number of emitted photons) N by finding the best match between the measured hit pattern $\{A_i\}$ and the expected pattern $\{a_i\}$ calculated from the detector response model.

^{83m}Kr S2 (MDC2)

Reconstruction

ANTS2: adoption

- LIP
 - Gamma cameras
 - $\circ \quad \text{Dark matter / } 0 \nu \beta \beta \text{ decay}$
 - Neutron detectors
 - Proton therapy
- Politecnico di Milano
 - MRI SPECT
 - 3D gamma detector
- University of Berkeley
 - Liquid xenon detectors
- MEPhI (Moscow)
 - Neutriono detectors
- FZ Julich
 - Neutron Anger camera
- RAL
 - ISIS neutron source

