LIP Lisbon Thursday seminar Lisbon, 28 November 2019

First results of the SNO+ experiment

Valentina Lozza FCT ^{Fundação} e a Tecnologia LIP Lisbon

SNO+ is a multi-purpose detector

Neutrinoless double-beta decay of ¹³⁰Te

Geo and reactor anti-neutrinos

Solar neutrinos pep, CNO, low energy ⁸B

Rare decays

Supernovae neutrinos

In this talk:

* The SNO+ detector

- * Structure
- * Calibration
- * Results for the water phase:
 - * Invisible nucleon decay
 - * B8 solar neutrino flux measurement
 - * External background measurements

* Prospects

* Sensitivity for neutrinoless double-beta decay

SNQ

SNQ

.

.

SNQ

SNQ

SNO+ LOCATION

Adapted from http://www.deepscience.org/contents/underground_universe_popup03.shtr

3000

Kamioka

Gran Sasso

Modane

8000

SN

SNO+ DETECTOR

Main characteristics:

- * Located 2 km underground at SNOLAB, Sudbury (Canada)
 - Muon flux is reduced to ~3 µ/hr, low cosmogenic radiation
- Suspended in a cavern of 30.5 m height, full of ultra-pure water
- Shield against the radioactivity in the rock
 * The 6 m radius acrylic vessel is kept in place by a high-purity hold-up and hold-down ropes system
- * 9300 PMTs, placed on a 8 m support structure, provide 54% coverage of the detector area.

SN

Upgraded DAQ

New Calibration system

New hold-down ropes system LS lighter than water

Dec.

Detector

commissioning

3.9 t of Te

PHYSICS GOALS & PHASES SNG

Goal	Water Phase (2017-2019)	Pure LS Phase (Now)	Te-loaded Phase (2020)
^B OVßß-decay			
⁸ B Solar neutrinos	X	X	X
Low-energy solar neutrinos		X	
Supernova neutrinos	X	X	X
Reactor anti-neutrinos	(X)	X	X
Geo anti-neutrinos		X	X
Exotic searches (i.e. nucleon decay)	X	X	X

SNO+@LIP

SNO+@LIP

HARDWARE

- Delivered the systems for source deployment in SNO+
- Develop gamma calibration sources
- Develop the system for the optical calibration using fibers
- Installation of the optical fibers

DETECTOR CHARACTERIZATION

- Key role in the determination of the purity/cleanliness requirements for the various phases
 Delivered the optical calibration
 - of the detector in water

ANALYSIS

- Background analysis and daily background identification in water and scintillator
- Neutron analysis in water
- Anti-neutrino analysis in water and scintillator

CODE & DATA

- High contribution to the development of the SNO+ code
- Important contribution to the reconstruction algorithms
- Responsible for the code documentation
- Delivered the data quality for SNO+
- Important contribution for data processing

SNOH@LP URM

SNO+@LIP FIBERS

- Major contribution from Portugal
 - \cdot all PMMA fibers
 - mechanical parts done at LIP-Coimbra

- light injection with full coverage
- 92 LED channels, 3 lasers
- installed and working

SNQ

CALIBRATION

Don't call the Nobel Committee just yet: We forgot to calibrate the instruments before the experiment...

Main calibration sources used:

* Diffused isotropic laser → Calibrate PMT gain, timing and water optics

Laserball deployed inside the detector

Full characterization of the optical effects

CALIBRATION SNG

Main calibration sources used:

- * Diffused isotropic laser
- → Calibrate PMT gain, timing and water optics
- * ¹⁶N gamma source
- → Calibrate energy scale and resolution

CALIBRATION SNG

Main calibration sources used:

- * Diffused isotropic laser
- → Calibrate PMT gain, timing and water optics
- * ¹⁶N gamma source
- → Calibrate energy scale and resolution
- * AmBe neutron source
- \rightarrow Calibrate the neutron response, energy scale

WATER & ACRYLIC OPTICS

- * Parameters measured:
- → Internal water attenuation coefficients
- → External water attenuation coefficients
- → Laserball parameters
- → PMT angular response up to 45 degree
- → PMT efficiencies

OTHER OPTICS CALIBRATIONS

External LED/Laser system → Further calibrate PMT and optics. Reduce risk of contamination due to source deployment

> Cherenkov source → Decouple optical microphysical parameters in scintillator and Te phase

SNQ

Collimated laser beam at different λ for scattering measurements

* Systematic uncertainties of energy scale and resolution are extracted from comparisons of fit values between data and MC

The fit is characterized in terms of: * scale = a linear correction to the energy * resolution = relating to the width of the spectrum.

VERTEX & POSITION UNCERTAINTIES

Fit with a distribution function representing the position of the first Compton electron, estimated from the Monte Carlo model, convolved with a Gaussian function and an exponential tail

Parameter	Uncertainty, δ_i
x offset (mm)	+16.4
y offset (mm)	+22.3
z offset (mm)	+38.4 -16.7
x scale (%)	+0.91 -1.01
y scale (%)	+0.92 -1.02
z scale (%)	+0.92 -0.99
x resolution (mm)	104
y resolution (mm)	98
z resolution (mm)	106
Angular resolution	+0.08 -0.13
β_{14}	±0.004

Valentina Lozza, LIP Lisboa

30

PHYS.REV. D 99, 032008 (2019)

NUCLEON DECAY

V. Fisher, CIPANP 2018

ONLY ~55 BACKGROUND EVENTS/YEAR AFTER SELECTION (ABOVE ~6MEV)

Analysis of the first dataset: May - December 2017

- * 235 days of data
 - detector live time = 95%
 - calibration or maintenance time = 16.9%
 - not pass data quality checks = 29.3%
 - instrumental effects, muon events, dead time = 2.4%

Overall 114.7 days ± 0.04%

- * During the SNO+ water phase, significant work was done on commissioning the water processing and recirculation systems.
 - variation in Rn related background
 - data period has been divided in timebins with background levels were relatively stable
 - Background estimate for each + specific set of analysis cuts.
 - run-by-run MC production to account for variations in live channels

- * Background characterisation
 - Study the time evolution of the event's density in order to identify hot regions and the potential cause of the localized increase
 - Divide the detector in 2 major regions: inner AV water (light blue) and outer AV water (dark blue)
 - Divide each region into 4 Z-zones
 - Correlated the effect of a variation in the background rate (Rn) to the water circulation route
 - Correlated the effect of a variation in the background rate to the various detector states (change in trigger thresholds, channels offline, ...)
 - Define the cuts for the nucleon decay analysis

Ingress of recirculated (purified) water

Data set	$T_e(MeV)$	R (mm)	z (m)	$\cos heta_{\odot}$
1	5.75 - 9	$<\!5450$	<4.0	< 0.80
2 (z > 0)	5.95 - 9	$<\!4750$	>0.0	$<\!0.75$
2 (z < 0)	5.45 - 9	$<\!5050$	< 0.0	< 0.75
3	5.85 - 9	$<\!5300$	-	< 0.65
4	5.95 - 9	$<\!5350$	> -4.0	< 0.70
5	5.85 - 9	$<\!5550$	< 0.0	< 0.80
6	6.35 - 9	$<\!5550$	-	< 0.70

- FV cut to reduce external backgrounds
 - Cut in radius and z
- Cut on solar direction reduces the solar neutrino background
 - other backgrounds are flat in $\cos\theta_{\odot}$

Ingress of recirculated (purified) water

Two independent blind analyses (remove [5-15]MeV):

Counting analysis

- Cut and count approach
 - Background analyses provides the expected counts in the ROI
- Upper limit on the number of signal decays:

expected background events

Two independent blind analyses (remove [5-15]MeV):

Counting analysis

Data set	Observed events	Expected events
1	1	$1.17^{+4.60}_{-0.05}$ $^{-0.39}_{+1.33}$
2	2	$2.35^{+4.62}_{-0.40}$ $^{+3.44}_{-0.81}$
3	4	$3.47^{+4.60}_{-0.15}$ $^{+3.11}_{-0.96}$
4	8	$3.37^{+4.60}_{-0.17}$ $^{+2.70}_{-0.98}$
5	1	$1.46^{+4.60}_{-0.13}$ $^{+2.17}_{-0.60}$
6	6	$5.84^{+7.40}_{-2.31}$ $^{+2.68}_{-0.62}$
Total	22	$17.65^{+12.68}_{-2.36}$ $^{+6.51}_{-1.85}$

22 EVENTS SELECTED [17.65+14.25-3.00 EXPECTED]

Two independent blind analyses (remove [5-15]MeV):

Counting analysis

Data set	Observed events	Expected events
1	1	$1.17^{+4.60}_{-0.05}$ $^{-0.39}_{+1.33}$
2	2	$2.35^{+4.62}_{-0.40}$ $^{+3.44}_{-0.81}$
3	4	$3.47^{+4.60}_{-0.15}$ $^{+3.11}_{-0.96}$
4	8	$3.37^{+4.60}_{-0.17}$ $^{+2.70}_{-0.98}$
5	1	$1.46^{+4.60}_{-0.13}$ $^{+2.17}_{-0.60}$
6	6	$5.84^{+7.40}_{-2.31}$ $^{+2.68}_{-0.62}$
Total	22	$17.65^{+12.68}_{-2.36}$ $^{+6.51}_{-1.85}$

22 EVENTS SELECTED [17.65+14.25-3.00 EXPECTED]

- Multi-dimensional LH fit
 - Observables:
 - Energy
 - Radial event position
 - Sun direction
 - Light isotropy
 - Event direction

Two independent blind analyses (remove [5-15]MeV):

Counting analysis

Data set	Observed events	Expected events
1	1	$1.17^{+4.60}_{-0.05}$ $^{-0.39}_{+1.33}$
2	2	$2.35^{+4.62}_{-0.40}$ $^{+3.44}_{-0.81}$
3	4	$3.47^{+4.60}_{-0.15}$ $^{+3.11}_{-0.96}$
4	8	$3.37^{+4.60}_{-0.17}$ $^{+2.70}_{-0.98}$
5	1	$1.46^{+4.60}_{-0.13}$ $^{+2.17}_{-0.60}$
6	6	$5.84^{+7.40}_{-2.31}$ $^{+2.68}_{-0.62}$
Total	22	$17.65^{+12.68}_{-2.36}$ $^{+6.51}_{-1.85}$

22 EVENTS SELECTED [17.65+14.25-3.00 EXPECTED]

- Background included in the analysis:
 - solar neutrinos
 - reactor anti-neutrinos
 - atmospheric neutrinos
 - ✤ U & Th chain radioactivity

Results:

	-		
	Spectral analysis	Counting analysis	Existing limits
n	2.5×10^{29} y	2.6×10^{29} y	5.8×10^{29} y [KamLAND]
р	3.6 × 10 ²⁹ y	3.4×10^{29} y	2.1×10^{29} y [SNO]
pр	4.7×10^{28} y	4.1×10^{28} y	5.0×10^{25} y [Borexino]
pn	2.6×10^{28} y	2.3×10^{28} y	$2.1 \times 10^{25} \text{ y}$ [*]
nn	1.3×10^{28} y	0.6×10^{28} y	1.4×10^{30} y [KamLAND]

Work in progress: Use the second part of low background water data to improve the limit on n!!! $[*] = \begin{bmatrix} V. \text{ Tretyak, V. Yu. Denisov, and Yu. G. Zdesenko,} \\ \text{JETP Lett. 79, 106 (2004), [Pisma Zh. Eksp. Teor.} \\ \text{Fiz.79,136(2004)], arXiv:nucl-ex/0401022 [nucl-ex].} \end{bmatrix}$

PHYS.REV. D 99, 012012 (2019)

SOLAR NEUTRINOS

Measure of ⁸B solar neutrino flux

8B SOLAR NEUTRINOS

Measure of ⁸B solar neutrino flux

- * Region of interest [5-15] MeV
 - Extremely low background measurement
 - the deep UG location of SNOLAB highly reduces the muon and the muon induced background
 - Elastic scattering of electron by neutrinos (NC and CC)
 - Directional measurement (electrons keep the neutrino direction)

* Selection cuts to remove instrumental backgrounds

FV cut of 5.3 m in radius to reduce the externals.

Solar rate = 1.30 ± 0.18 events/kt-daySolBackground rate = 10.23 ± 0.38 events/kt-dayBackground rate

Solar rate = 1.03 + 0.13 + 0.13 + 0.12 events/kt-day Background rate = 0.25 + 0.09 + 0.07 events/kt-day

Solar rate = 1.30 ± 0.18 events/kt-day Background rate = 10.23 ± 0.38 events/kt-day

Solar rate = 1.03 + 0.13 + 0.12 events/kt-day Background rate = 0.25 + 0.09 + 0.07 events/kt-day

48

BACKGROUND MEASUREMENT

EXTERNAL BACKGROUNDS

- * Measure the external background sources: purity level of PMTs, external water, acrylic vessel, ropes system.
- \ast Measure the internal water purity for the nucleon-decay, solar and anti-neutrino study

in water.

Event Selection:

* <u>Box Analysis</u> AV+Ropes External Water **SNO+** Preliminary PMT Internal Water outward pointing Q 0.8 0.6 10² 0.4 0.2 ſ inward pointing -0.2 10 -0.4-0.6 -0.8 1.8 0.2 10 0.4 0.6 0.8 1.2 1.6 2 1.4 R^3/R_{AV}^3 Valentina Lozz

All Background	$-0.12 < \beta_{14} < 0.95$
	ITR > 0.55
	$3.0 < T_e < 6.35$
AV + Ropes	$0.69 < R^3/R_{AV}^3 < 0.90$
	$\widehat{U} \cdot \widehat{R} > 1.0 - 12 \times (R^3/R_{AV}^3 - 0.69)^2$
External Water	$1.45 < R^3/R_{AV}^3 < 1.95$
	$\widehat{U}\cdot\widehat{R}>0.2$
PMT	$1.6 < R^3/R_{AV}^3 < 2.0$
	$\widehat{U}\cdot\widehat{R}<-0.8$
Internal Water	$R^3/R_{AV}^3 < 0.37$

EXTERNAL BACKGROUNDS

* <u>Likelihood Analysis</u>

- External radioactive sources:
- Single region with a 2D fit in energy and isotropy
- $1.1 < (R/R_{AV})^3 < 1.7$ or $0.8 < (R/R_{AV})^3 < 0.9$

- $\times 10^{\circ}$ Counts / 23.2 Days / 0.1 🗕 Data 4.5 MC fit Syst. Uncertainty - shape only Timebin 6 (23.2 Days), z<0 3.5 3 Fit region: $0.8 < R^3/R_{AV}^3 < 0.9$ or $1.1 < R^3/R_{AV}^3 < 1.7$ 2.5 2 1.5 1 F 0.5 0 **L** 0.8 $\frac{1.6}{R^3}/R_{AV}^{3}$ 0.9 1.1 1.2 1.3 1 1.4 1.5
- Te = reconstructed kinetic energy
- ITR = In Time Ratio used to reject events with broad timing distributions

• $(R/R_{AV})^3 < 0.37$

	AV water		Water s	Water shielding		AV	
	U	Th	U	Th	U	Th	Th
Period	$[\times 10^{-14} \text{ gU}/g_{H_2O}]$	$[\times 10^{-15} \text{ gTh}/g_{H_2O}]$	$[\times 10^{-13} \text{ gU}/g_{H_2O}]$	$[\times 10^{-14} \text{ gTh}/g_{H_2O}]$	$[\times 10^{-12} \text{ gU}/g_{AV}]$	$[\times 10^{-12} \text{ gTh}/g_{AV}]$	$[\times 10^{-9} \text{ gTh}/g_{\text{rope}}]$
1	$19.0 \pm 1.8^{+3.9}_{-3.7}$	$5.9 \pm 5.2^{+4.0}_{-5.9}$	$2.2\pm0.3^{+3.7}_{-1.3}$	$9.9 \pm 1.6^{+22.9}_{-9.7}$	$5.5 \pm 1.5^{+6.5}_{-5.5}$	$0.0^{+0.0}_{-0.0} \ {}^{+1.1}_{-0.0}$	$0.0^{+0.0}_{-0.0} \ {}^{+0.3}_{-0.0}$
2(z > 0)	$48.5 \pm 3.1 \substack{+11.7 \\ -10.1}$	$34.5 \pm 13.7^{+11.2}_{-34.5}$	$86.9 \pm 1.1^{+103.2}_{-49.2}$	$207.7 \pm 6.4^{+449.9}_{-173.0}$	$33.0 \pm 16.4^{+60.8}_{-33.0}$	$12.5 \pm 2.4^{+33.9}_{-12.5}$	$2.8\pm0.5^{+7.7}_{-2.8}$
2(z < 0)	$3.6\pm0.9^{+1.0}_{-0.7}$	$2.7^{+4.2}_{-2.7}$ $^{+1.3}_{-2.7}$	$16.3\pm0.4^{+24.4}_{-8.5}$	$39.8 \pm 2.8^{+134.8}_{-39.8}$	$7.7 \pm 5.5^{+24.4}_{-7.7}$	$3.7 \pm 1.2^{+11.0}_{-3.7}$	$0.9\pm0.3^{+2.5}_{-0.9}$
3	$8.7\pm0.7^{+2.4}_{-1.7}$	$8.3 \pm 3.1^{+3.0}_{-8.3}$	$1.7\pm0.1^{+2.5}_{-1.1}$	$9.3\pm0.5^{+19.1}_{-9.1}$	$1.2\pm0.9^{+7.9}_{-1.2}$	$0.0^{+0.3}_{-0.0} \ {}^{+1.1}_{-0.0}$	$0.0^{+0.1}_{-0.0} \ {}^{+0.3}_{-0.0}$
4	$19.4 \pm 1.0^{+5.8}_{-4.4}$	$9.4 \pm 4.1^{+6.5}_{-9.4}$	$0.6\pm0.1^{+1.2}_{-0.4}$	$10.6\pm0.6^{+19.3}_{-8.8}$	$0.3^{+0.8}_{-0.3}$ $^{+2.2}_{-0.3}$	$0.0^{+0.1}_{-0.0} \ {}^{+0.5}_{-0.0}$	$0.0^{+0.0}_{-0.0} \ {}^{+0.1}_{-0.0}$
5	$53.5 \pm 3.7 \substack{+19.5 \\ -14.3}$	$29.0 \pm 17.1^{+24.7}_{-29.0}$	$2.3\pm0.2^{+5.3}_{-1.6}$	$8.6 \pm 1.3^{+31.9}_{-8.6}$	$5.2\pm0.9^{+6.7}_{-5.2}$	$0.1^{+0.5}_{-0.1} \ {}^{+0.3}_{-0.1}$	$0.0^{+0.1}_{-0.0} \ {}^{+0.1}_{-0.0}$
6	$67.5 \pm 2.1^{+26.3}_{-20.8}$	$67.1 \pm 10.0^{+38.7}_{-67.1}$	$1.2\pm0.1^{+2.4}_{-0.8}$	$10.0\pm0.7^{+28.8}_{-10.0}$	$1.7\pm0.9^{+3.8}_{-1.7}$	$0.0^{+0.1}_{-0.0} \ {}^{+1.0}_{-0.0}$	$0.0^{+0.0}_{-0.0} \ {}^{+0.2}_{-0.0}$

UPCOMING RESULTS

RADIOACTIVE BACKGROUNDS

- Since October 2018 the top of the acrylic vessel is covered by a cover gas volume = volume filled with boiled-off nitrogen that reduces the Rn ingress of a factor larger than 10⁴
 - Highly reduced U-chain background level allows a better identification and discrimination among background sources
 - In preparation = Measurement of external background source paper
 - Extremely important for all the follow-up phases.
- The data taking period is nearly twice the initial one
 - Increase the statistics for the nucleon decay search
 - Increase the statistics for the solar neutrino measurement at lower (<5 MeV) energy

NEUTRON DETECTION

Deployment of AmBe source

- * Neutron detection efficiency
- * Neutron capture time

Simple coincidence analysis. 2-exponential fit: signal + random backg.

Efficiency for triggering on a neutron: 47%

Signals extracted from the statistical analysis of coincidences (prompt 4.4 MeV γ s and delayed 2.2 MeV γ s) are compared to the total rate in this central AmBe run.

FUTURE SNO+

OVBB WITH SNO+ SNO+

★ Use of Tellurium

- *Chemical compatibility with acrylic
- *High light yield (~10,000 optical photons/MeV)
- *High purity available
- *Low scattering
- * Good optical transparency
- * Fast decay (different for betas and alphas)

- * High natural abundance (34.08%)
- * $2\upsilon\beta\beta T_{1/2} = 8.2 \times 10^{20} \text{ yr}$
- * Q-value = 2.53 MeV
- *Good alpha/beta discrimination
- * Long attenuation length
- * High light yield
- * No inherent optical absorption lines

EXPECTED BACKGROUND

9.47 events/yr

C

EXPECTED BACKGROUND

FUTURE² SNO+

HIGHER LOADINGS SNG

New Physics Sensitivity: Phase-Space Weighted Half-Life

WHY TE-LOADED SCINTILLATOR?

$$m_{\beta \beta}^{-2} \propto T_{1/2}^{0 \nu \beta \beta} \propto rac{\epsilon}{A} \sqrt{rac{M \cdot t}{B \cdot \Delta E}}$$

To improve the sensitivity by a factor of 2, it is necessary an experimental improvement of 16 Requirements: * Large masses (volumes) * High radio-purity

The loaded liquid scintillator technique is easily scalable
 ¹³⁰Te has a large natural abundance that doesn't require loadings
 Among the DBD isotopes is relative cheap (20 times cheaper than Xe)
 Annual production is ~150 t (Xe resources are very limited)

SNO+ completed its water phase:

- * Two main physics papers published up to now:
 - invisible nucleon decay
 - ✤ ⁸B solar neutrinos
- * Measured external backgrounds
 - Paper in preparation
- * More analyses to come:
 - neutron capture
 - ✤ anti-nu in water
- ***** SNO+ started pure scintillator phase:
 - Low energy solar neutrinos
 - Reactor nd geo antineutrinos
- * In 2020 we expect to deploy Te
 - Search for the neutrinoless double-beta decay

LIP Coimbra LIP Lisboa

SNOLAB TRIUMF University of Alberta Queen's University Laurentian University

TU Dresden

Boston University BNL University of California Berkeley LBNL University of Chicago University of Pennsylvania UC Davis

Oxford University Queen Mary University Of London University of Liverpool University of Sussex University of Lancaster

UNAM

_IP Coimbra _IP Lisboa

SNOLAB TRIUMF University of Alberta Queen's University Laurentian University

SNQ

SNQ²⁰¹⁷

Thank you for your attention

Boston University BNL University of California Berkeley LBNL University of Chicago University of Pennsylvania UC Davis

Oxford University Queen Mary University Of London University of Liverpool University of Sussex University of Lancaster

JNAM

Valentina Lozza, LIP Lisboa

(a,n) yield in low background experiments