

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

PhD Possibilities at ATLAS

Patricia Conde Muíño (IST, LIP)

The ATLAS Experiment

The ATLAS experiment

- Specialised detectors
- Cutting edge technology
- 10⁸ electronic channels
 Home made fastest electronics

The ATLAS experiment

- Specialised detectors
- Cutting edge technology
- 10⁸ electronic channels
 Home made fastest electronics

ATLAS Collaboration

- Truly global:
- 181 Institutes,
- 38 countries

Composed of:

- >5000 members
- >3000 scientists
- ~1000 PhD students

ATLAS Collaboration

IINR

Japan

- Truly global:
- 181 Institutes,
- 38 countries

Composed of:

- >5000 members
- >3000 scientists
- ~1000 PhD students

The Portuguese ATLAS team

National group: LIP (Lisbon, Coimbra, Minho) FCUL, IST, FCTUC, U. Minho, CEFITEC/UNL, INESC, CFMC, IBEB AdI engineers training program

Physics topics

- Higgs couplings to quarks
- Spin/CP properties
 B-jet suppression as probe of the Quark Gluon Plasma
 Quartic Gauge Boson Couplings

History of the Universe

From discovering the Higgs to measuring its properties

2015

• First observation of $H \rightarrow WW \rightarrow \ell \nu \ell \nu$

2018

- First observation
 - of H→bb

2018

 First observation of ttH production

9

And now what?

Measure couplings even more precisely

- Spin/CP properties of the vertices
 - Angular observables
- Probe SM predictions
- Search for new physics
 - Are they new particles in the loops?
 - Other Higgses?

 $m_H = \sqrt{2}\mu = \sqrt{\lambda}v$ (v = vacuum expectation value)

Quartic Gauge Boson Couplings $\gamma\gamma \rightarrow WW \rightarrow \ell \nu \ell \nu$

- Forward detectors transform the LHC in a $\gamma\gamma$ collider!
- QGBC: very precise SM predictions
 - Can be probed!
 - Search for WW in photo-production
- Same final state can be used to search for dark matter!
 - Need dedicated trigger

 First observation in 2010

 Probe of Quark-Gluon Plasma

Distinguish the nature of the energy loss

Z \rightarrow $\mu\mu$ event with 20 pile-up interactions

Upgrade challenges

 Huge detector occupancy
 Evento com um decaimento Z→µµ e mais outras 65 colisões pp

TileCal hadronic calorimeter

- CalibrationOptimize
- performance • Study radiation hardness with pp collisions • Use ML to optimize results
- HV distribution system
- Detector Control System

TileCal calibration

ML to study TileCal ageing Impact in FCC detector design!

DCS Leading TileCal DCS

Upgrade HV distribution system Full responsibility

LAr EM barre

LAr hadronic end-cap (HEC)

1 end-cap (EMEC) =

Tile extended barre

LAr forward calorimeter (FCAL)

Tile barrel

LHC Upgrade Challenges

- Interesting processes have small cross-sections
- Need to process & select interesting events in real time
- 40 MHz event rate
- Very large number of interactions/event

	Run 2	Run 3	Run 4
Energy (√s)	13TeV	14 TeV	14 TeV
Max. Luminosity (cm ⁻² s ⁻¹)	1-2×10 ³⁴	2-3×10 ³⁴	5-7×10 ³⁴
Interactions/event	40	55-80	140-200
Bunch crossing rate	40 MHz	40 MHz	40 MHz
Offline storage rate	1000 Hz	1500 Hz	1500 Hz
Bunch spacing	25 ns	25 ns	25 ns

18

GPUs for Accelerating Jet Trigger Algorithms

- Exploit parallelism
- New paradigm: single instruction-multiple data
- Calorimeter clustering on GPUs
 - 1st prototype demonstrated great potential
 - New framework update and optimisation

ongoing

 Study also FPGAs as alternative

Topo-Automaton Clustering (TAC)

TopoClustering: Groups neighbours according to signal/noise

Seed (S/N>4) Growing (S/N>2) Terminal (S/N>0) Not enough S/N Not evaluated

- TAC: Maximimize parallelism:
 - Data organised in cell pairs
 - Use cellular automaton
 - Propagate flag on a grid of elements (cell pair)
 - Cells get the largest flag on each iteration

More information:

- atlasinfo@lip.pt
- www.lip.pt/atlas
- pconde@lip.pt

Thanks

Acknowledgments

TileCal current HV regulation system

- Located inside the detector
- Will become old and difficult to maintair
- Not expected to survive to Phase II radiation

The ATLAS Experiment

More than 25 years of continuous work

Portuguese contributions to ATLAS construction

TileCal hadronic calorimeter

600 k WLS fibres aluminized

Design of the cells and fibres routing

Fibres insertion with robot in 15 k plastic profiles

Detector Control System

Forward detectors

Trigger/DAQ

In addition: scintillators, laser calibration, PMT quality control, instrumentation of the modules, calibration, certification and commissioning

Current Portuguese Responsibilitiesin ATLASJets HLT

TileCal

Calibration,

Leading TileCal DCS

Distributed computing

Iberian Cloud Coordination

TileCal Upgrade HV distribution system

ATLAS Roman Pot DCS and HLT

Co-leading ARP DCS

Trigger Upgrade: HTT DCS, simulation, mezzanine production

Comprehensive programme of top