Family symmetries in particle physics

Ivo de Medeiros Varzielas

CFTP, IST, UL

Caparica, 2020/02/07

The Standard Model (1 generation)

Gauge group: $SU(3)_C \times SU(2)_L \times U(1)_Y$

 $L = (L_1, L_2) = (\nu_L, e_L)$ is doublet of $SU(2)_L$ e_R just $U(1)_Y$ (ν SM: add ν_R , complete singlet)

Scalar *H* also doublet of $SU(2)_L$ $\langle H \rangle$ breaks $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$

Mass terms: $m_e L_2 e_R$ not invariant under $SU(2)_L$

But
$$y_e[H^{\alpha}L_{\alpha}]e_R$$
 is... $\langle H \rangle = (0, v)$
 $y_evL_2e_R \rightarrow m_fL_2e_R$ with $m_e = y_ev$

The Standard Model is very successful but...

- Neutrinos have masses (*v*SM)
- Dark matter (no viable explanation)
- Matter / antimatter asymmetry (no viable explanation)
- Hierarchy problem (fine-tuning between parameters)
- Strong CP problem (fine-tuning between parameters)
- Gauge couplings (additional free parameters) GUT?
- Flavour problem (many additional free parameters) FS?

BSM solutions involve additional fields and symmetries

The Standard Model flavour problem: masses

3 fermion generations? Masses span orders of magnitude?

The Standard Model flavour problem: mixing

3 generations of quarks, small mixing

3 generations of leptons, large and peculiar mixing

(mixing between weak and mass eigenstates)

Ivo de Medeiros Varzielas Family symmetries in particle physics

Beyond the Standard Model with family symmetries

Without $y_f[HF]f_R$, $\mathcal{L}_{\nu SM}$ has accidental symmetry $SU(3)^6$

FS: upgrade subgroup of $SU(3)^6$ to actual symmetry of $\mathcal L$

- Generations charged differently under FS
- Yukawa couplings no longer invariant
- FS must be broken somehow...

FS must be broken

Abelian example: U(1) + single familon

Respective mass matrix

$$M_d \sim m_b \begin{pmatrix} \epsilon^4 & \epsilon^3 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & \epsilon \\ \epsilon^2 & \epsilon & 1 \end{pmatrix}$$

 $\frac{\langle \phi \rangle}{M_X} = \epsilon$ Each entry has a y_{ij} parameter!

Non-Abelian?

3 reasons

- 3 generations explained naturally
- ν SM: FS \subset *SU*(3)⁶; *SO*(10) GUT: FS \subset *SU*(3)
- Lepton mixing strongly suggests non-Abelian FS

Family symmetries

$SO(10) \times SU(3)?$

Family assignments SU(3) + familons

Fermions and familons

- Fermions *F_i*, *f_{Rj}*: FS triplets
- Familons \(\phi_A^i\): FS anti-triplets
- Invariant mass terms: $(\phi_A^i F_i)(\phi_B^j f_{Rj})H$

Desired VEVs

$$egin{aligned} &\langle \phi_{23}
angle \propto (0,1,-1)\epsilon \ &\langle \phi_{123}
angle \propto (1,1,1)\epsilon^2 \end{aligned}$$

Mass matrices example

Term 123 L / 23 R

$$+y_{\odot}(\phi_{123}^{i}F_{i})(\phi_{23}^{j}f_{Rj})H$$

Respective mass matrix

$$+y_{\odot}\left(egin{array}{ccc} 0 & \epsilon^3 & -\epsilon^3 \ 0 & \epsilon^3 & -\epsilon^3 \ 0 & \epsilon^3 & -\epsilon^3 \end{array}
ight)$$

Mass matrices example

Term 23 L / 123 R

$$+y_{@}(\phi_{23}^{i}F_{i})(\phi_{123}^{j}f_{Rj})H$$

Respective mass matrix

$$+ y_{\mathbb{Q}} \begin{pmatrix} 0 & 0 & 0 \\ \epsilon^3 & \epsilon^3 & \epsilon^3 \\ -\epsilon^3 & -\epsilon^3 & -\epsilon^3 \end{pmatrix}$$

Aspects of Family Symmetries

Effective Alignments IdMV, Miguel Levy, Ye-Ling Zhou, arXiv:1903.10506

Dark Side of the Seesaw (Dark Matter and Neutrino Masses) Subhaditya Bhattacharya, IdMV, Biswajit Karmakar, Stephen F. King, Arunansu Sil, arXiv:1806.00490

Leptogenesis (BAU) Fred Bjorkeroth, IdMV, Maria Luisa Lopez-Ibanez, Aurora Melis, Oscar Vives, arXiv:1904.10545

Multi-Higgs controlled FCNCs (flavour problem) IdMV, Jim Talbert, arXiv:1908.10979

Supersymmetry (flavour problem) IdMV, Maria Luisa Lopez-Ibanez, Aurora Melis, Oscar Vives, arXiv:1807.00860