

Higgs Boson Physics with ATLAS

K. Nikolopoulos University of Birmingham

18th November 2013, Lisbon

The Standard Model Higgs boson

 \rightarrow The SM unifies the electromagnetic and weak interactions through the symmetry $SU(2)_{L} \otimes U(1)_{Y}$, with massless carriers \rightarrow This symmetry is spontaneously broken through the nonvanishing vacuum expectation value of the Higgs field \rightarrow Three of the four degrees of freedom of the Higgs field are becoming the longitudinal polarizations of the vector bosons, the fourth is the Higgs boson.

The Higgs boson has been one of the holy grails of particle physics for the past half century!

Global Electroweak Fit

 \rightarrow The electro-weak observables depend on m_H through radiative corrections

 \rightarrow Global fit performed providing information on the Higgs mass, assuming validity of the SM

Non-LHC SM Higgs status

- \rightarrow LEP m_H>114.4 GeV at 95% CL
- \rightarrow Tevatron excluded 149 GeV<m_H<182 GeV at 95% CL
- \rightarrow Large portion of allowed m_H uncovered
- \rightarrow m_H>200 GeV not considered.

... a long way since then ...

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

... the observation of a new particle ...

Physics Letters B 716 (2012) 1-29 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC $\stackrel{\text{\tiny{$\widehat{}}}}{}$

ATLAS Collaboration*

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

ABSTRACT

ARTICLE INFO

Article history Received 31 July 2012 Received in revised form 8 August 2012 Accepted 11 August 2012 Available online 14 August 2012 Editor: W.-D. Schlatter

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb-1 collected at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(*)} \rightarrow e\nu\mu\nu$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)}$, $WW^{(*)}$, $b\bar{b}$ and $\tau^+\tau^-$ in the 7 TeV data and results from improved analyses of the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 ± 0.4 (stat) ±0.4 (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model Higgs boson.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

Physics Letters B 716 (2012) 30-61

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC*

CMS Collaboration*

CERN, Switzerland

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In recognition of their many contributions to the achievement of this observation.

ARTICLE INFO

ABSTRACT

Received 31 July 2012 Received in revised form 9 August 2012 Accepted 11 August 2012 Available online 18 August 2012 Editor: W.-D. Schlatter

Keywords CMS Physics Higgs

Article history

Results are presented from searches for the standard model Higgs boson in proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb⁻¹ at 7 TeV and 5.3 fb⁻¹ at 8 TeV. The search is performed in five decay modes: $\gamma\gamma$, ZZ, W⁺W⁻, $\tau^+\tau^-$, and bb. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, $\gamma\gamma$ and ZZ; a fit to these signals gives a mass of 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one. © 2012 CERN. Published by Elsevier B.V. All rights reserved.

Higgs boson physics with ATLAS

... and a Nobel Prize

VOLUME 13, NUMBER 20

PHYSICAL REVIEW LETTERS

16 November 1964

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik,[†] C. R. Hagen,[‡] and T. W. B. Kibble Department of Physics, Imperial College, London, England (Received 12 October 1964)

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs:

"for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, <u>by the ATLAS and CMS experiments</u> <u>at CERN's Large Hadron Collider</u>"

The LHC and the detectors

K. Nikolopoulos

A Toroidal LHC ApparatuS

⇒ General purpose detector designed for the harsh LHC environment

	ATLAS
Magnets	2T solenoid, 3 air-core toroids
Tracking	silicon + transition radiation tracker
A Calorimetry	sampling LAr technology
Hadron Calorimetry	plastic scintillator (barrel) LAr technology (endcap)
Muon	independent system with trigger capabilities
Trigger	3 Level Implementation from 40 MHz to 400 Hz

E

\Rightarrow Very important to ensure high data-taking efficiency/quality

ATLAS p-p run: April-December 2012										
Inn	Inner Tracker Calorimeters		Muon Spectrometer				Magnets			
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.9	99.4	99.8	99.1	99.6	99.6	99.8	100.	99.6	99.8	99.5
All good for physics: 95.8%										
Luminosity weighted relative detector uptime and good quanty data delivery during 2012 stable beams in pp collisions at $v_{s=8}$ TeV between April 4 th and December 6 th (in %) – corresponding to 21.6 fb ⁻¹ of recorded data.										

Higgs boson physics with ATLAS

The LHC Run I dataset

Higgs boson physics with ATLAS November 18th, 2013

[[] 8

ATLAS Performance: Electrons and Muons

 $Z \rightarrow \mu\mu$ candidate with 25 reconstructed vertices from the 2012 run. Only good quality tracks with pT>0.4GeV are shown

UNIVERSITY^{OF} BIRMINGHAM 9

ATLAS Performance: Photons and EM response

UNIVERSITYOF

BIRMINGHAM 10

ATLAS Performance: Jets and Missing ET

K. Nikolopoulos

Higgs boson physics with ATLAS November 18th, 2013

BIRMINGHAM 11

Higgs boson production

For m_H = 125 GeV cross-section increases by ~1.3 when going from 7 to 8 TeV by ~3.3 when going from 7 to 14 TeV

The LHC is a Higgs Factory

K. Nikolopoulos

Higgs boson physics with ATLAS

Higgs boson decays

m_H~125 GeV gives access to several decay channels

K. Nikolopoulos

Н→үү

- Sensitive for low m_H (110 150 GeV)
- Search for narrow peak in m_{YY}
 Background from data
- Main Backgrounds:
 - \rightarrow di-photon \rightarrow m_{YY} resolution
 - \rightarrow jj and $\gamma j \rightarrow$ photon-ID

 $\frac{Selection}{Two isolated photons with} \\ E_T>40 GeV and 30 GeV respectively$

 π^0 - γ Rejection

H→γγ: Event Categories

Improve the overall S/B of the analysis, and enhance particular signal contributions for properties studies

K. Nikolopoulos

Higgs boson physics with ATLAS Nover

$H \rightarrow \gamma \gamma$: $m_{\gamma \gamma}$ spectra

$H \rightarrow \gamma \gamma$: Results

- Local significance: 7.4 σ (with 4.1 σ expected) @ m_H=126.5 GeV
 - Inclusive analysis: 6.1σ (with 2.9 σ expected)
- Mass measurement: 126.8 ± 0.2 (stat) ± 0.7 (syst) GeV
 - Main systematics: γ energy scale from Z \rightarrow ee, material modeling and presampler energy scale \rightarrow 0.6 GeV
- Rate with respect to Standard Model: 1.65 ± 0.24 (stat)^{+0.25}-0.18 (syst)
 - 2.3σ deviation from the Standard Model

$H \rightarrow ZZ \rightarrow 4I$

K. Nikolopoulos

H→ZZ^(*)→4I: Event Selection

Run Number: 182747, Event Number: 63217197

Date: 2011-05-28 13:06:57 CEST

Tracking and calorimeter isolation
Impact Parameter (IP) significance

Two same-flavor opposite-sign di-leptons (e/μ)
pT^{1,2,3,4} > 20, 15, 10, 7 GeV (6 GeV for μ)
Single lepton and di-lepton triggers

 $\begin{array}{l} 50 \ GeV < m_{12} < 106 \ GeV, \\ m_{thr}(m_{4l}) < m_{34} < 115 \ GeV \ m_{thr} = 12 - 50 \ GeV \\ \rightarrow \ all \ same-flavor \ opposite-sign \ pairs \ m_{ll} > 5 \ GeV \\ \rightarrow \ \Delta R(l,l') > 0.10(0.20) \ for \ all \ same(different)-flavor \end{array}$

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

H→ZZ^(*)→4I (I=e,µ) Backgrounds ZZ^(*)→41 and for m_{4I}<2m_Z Z+jets (Z+light jets/Zbb) and tt

$H \rightarrow ZZ^{(*)} \rightarrow 4I$: Results

K. Nikolopoulos

November 18th, 2013 Higgs boson physics with ATLAS

The Higgs boson mass

$H \rightarrow WW \rightarrow IvIv$

$H \rightarrow WW^{(*)} \rightarrow IvIv$

- Sensitive in wide mass range but:
 - no mass peak
 - uses all ATLAS components!
- Signature: II + MET
- Observable: m_T
- Backgrounds: WW, top, W/Z+jets
- Separate final states:
 - dilepton mass: m_{ll}
 - lepton flavors: μe, eμ, μμ, ee
 - jet multiplicities: 0, 1, ≥2

Run 214680, Event 271333760 17 Nov 2012 07:42:05 CET

pT > 25 GeV, pT>15 GeV, m_{II} upper threshold, ETMiss/ETMissRel and $\Delta \phi_{II}$ requirements, $\mu e/e\mu m_{II}>10$ GeV, $\mu\mu/ee m_{II}>12$ GeV and $|m_{II}-m_Z|>15$ GeV b-tag jet veto

$$m_{\rm T} = ((E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - |\mathbf{p}_{\rm T}^{\ell\ell} + \mathbf{E}_{\rm T}^{\rm miss}|^2)^{1/2}$$
 with $E_{\rm T}^{\ell\ell} = (|\mathbf{p}_{\rm T}^{\ell\ell}|^2 + m_{\ell\ell}^2)^{1/2}$

K. Nikolopoulos

Higgs boson physics with ATLAS November 18th, 2013

$H \rightarrow WW^{(*)} \rightarrow IvIv$: Results 2011+2012

H→bb

K. Nikolopoulos

H→bb

ATLAS-CONF-2013-079

- Largest BR but very high background
- Exploit associated production with W or Z
 - Final states with leptons, MET and b-jets
- Backgrounds: W/Z+jets and top
- Final discriminant m_{bb}
- Separate final states:
 - number of leptons: 0, 1, 2
 - P_T(V) or MET
 - number of jets
 - 26 signal bins in total
 - + 27 control regions

observation at 4.8 σ (5.1 σ) of VZ(\rightarrow bb) production

W

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

H→bb

UNIVERSITY^{OF} BIRMINGHAM 28

150

250

Rates/Couplings

Phys. Lett. B 726 (2013), pp. 88-119

Signal strength

K. Nikolopoulos

Signal strength for production mechanisms

 $\mu_{VBF} / \mu_{ggF+ttH}$

3

3.5

2.5

Spin/CP

K. Nikolopoulos

ATLAS Spin/CP studies: The channels

Channel	$H \to ZZ^{(*)} \to 4\ell$	$H \to WW^{(*)} \to \ell \nu \ell \nu$	$H \rightarrow \gamma \gamma$					
Dataset	$20.7 \text{ fb}^{-1} @ 8 \text{ TeV}$	$20.7 \text{ fb}^{-1} @ 8 \text{ TeV}$	$20.7 \text{ fb}^{-1} @ 8 \text{ TeV}$					
	$4.8 \text{ fb}^{-1} @ 7 \text{ TeV}$							
Reference	ATLAS-CONF-2013-013	ATLAS-CONF-2013-031	ATLAS-CONF-2013-029					
Signal	JHU⊕PYTHIA	PowHeg/JHU⊕PYTHIA	PowHeg/JHU⊕PYTHIA					
Tested Hypotheses								
0-	\checkmark	_	_					
1+	\checkmark	\checkmark	_					
1-	\checkmark	\checkmark	_					
2^+	\checkmark	\checkmark	\checkmark					

Spin Combination

- ZZ+WW+vv
- ATLAS-CONF-2013-040
- Phys. Lett. B 726 (2013), pp. 120-144

Production modes

- spin-0 : ggF (qqbar annihilation negligible)
- spin-1 : qqbar annihilation

spin-2 : ggF & qqbar annihilation

For the Graviton inspired tensor with minimal couplings to SM, ggF dominates with qqbar ~4%, but higher order QCD corrections may significantly modify this \rightarrow scan f_{qqbar}

VBF and VH production modes:

- yy : included in the analysis
- 4I : VBF production does not modify kinematics IvIv: negligible contribution

Statistical Treatment

$$\mathcal{L}\left(J^{P},\mu,\theta\right) = \prod_{j}^{N_{channel}} \prod_{i}^{N_{bins}} P\left(N_{i,j}|\mu_{j}S_{i,j}^{(J^{P})}\left(\theta\right) + B_{i,j}\left(\theta\right)\right) \times \mathcal{A}_{j}\left(\theta\right)$$

The test statistic is the ratio of profiled likelihoods (LLR) between the two hypotheses, nuisance parameters profiled separately for each hypothesis

$$q = \log \frac{\mathcal{L}(J^P = 0^+, \hat{\hat{\mu}}_{0^+}, \hat{\hat{\theta}}_{0^+})}{\mathcal{L}(J^P_{\text{alt}}, \hat{\hat{\mu}}_{J^P_{\text{alt}}}, \hat{\hat{\theta}}_{J^P_{\text{alt}}})}$$

The test statistic distribution for each hypothesis is extracted from ensemble tests (pseudo-experiments using the profiled values for nuisance parameters) and the CLs is built

$$CL_s(J_{alt}^P) = \frac{p_0(J_{alt}^P)}{1 - p_0(0^+)}$$

Note: μ_{SM} and μ_{JP} profiled independently (ie no assumptions on production rates)

$H \rightarrow \gamma \gamma$: Introduction

- Analysis similar to "rate/mass" analysis but optimized selection:

-
$$p_{T\gamma1} > 0.35~m_{\gamma\gamma}$$
 and $p_{T\gamma2} > 0.25~m_{\gamma\gamma}$

[Minimize $m_{\gamma\gamma}$ and $cos\theta^*$ correlations for background]

$H \rightarrow \gamma \gamma$: Fit Procedure

 $H \rightarrow \gamma \gamma$ is a low S/B final state (inclusive ~3%)

- Simultaneous fit to $m_{\gamma\gamma}$ and $|cos\theta^*|$ in signal region

- $m_{\gamma\gamma}$ in side-bands

Higgs boson physics with ATLAS

$H \rightarrow \gamma \gamma$: Fit results 0⁺ vs 2⁺

Data differ slightly, owing to the background being determined separately for each spin hypothesis

$H \rightarrow \gamma \gamma$: LLR 0⁺ vs 2⁺

K. Nikolopoulos

Higgs boson physics with ATLAS November 18th, 2013

H→ZZ→4I: Introduction

Two approaches:

- Train BDT separately for each hypothesis
- Use ME corrected for acceptance and pairing effects

H→ZZ→4I: Input Variables

K. Nikolopoulos

Higgs boson physics with ATLAS

$H \rightarrow ZZ \rightarrow 4I$: Distribution of discriminant

$H \rightarrow ZZ \rightarrow 4I : LLR 0^+ vs 0^-$

$H \rightarrow ZZ \rightarrow 4I$: Results Overview

 10_{I}

9

ATLAS $8 \stackrel{L}{\longrightarrow} H \rightarrow ZZ^{(*)} \rightarrow 4I$ Spin 0 Data $\sqrt{s} = 7 \text{ TeV} \int Ldt = 4.6 \text{ fb}^{-1}$ Signal hypothesis 1σ 2σ $6 \frac{1}{100} \sqrt{s} = 8 \text{ TeV} \int Ldt = 20.7 \text{ fb}^{-1}$ • J^P = 0⁺ • $J^{P} = 2^{+}$ Main Systematic: - High S/B vs Low S/B regions normalization (~10%) 2 owing to the uncertainty on m_H 0 -2 25 50 75 100 0 $f_{q\overline{q}}$ (%) 0^{-} assumed 0^+ assumed Obs. $p_0(J^P = 0^+)$ Obs. $p_0(J^P = 0^-)$ $CL_{s}(J^{P} = 0^{-})$ Channel Exp. $p_0(J^P = 0^+)$ Exp. $p_0(J^P = 0^-)$ $3.7 \cdot 10^{-3}$ $1.5 \cdot 10^{-3}$ 97.8% $H \rightarrow ZZ^*$ 0.31 0.015 0.022 0^+ assumed 1⁻ assumed Obs. $p_0(J^P = 0^+)$ Obs. $p_0(J^P = 1^-)$ $CL_{s}(J^{P} = 1^{-})$ Channel Exp. $p_0(J^P = 1^-)$ Exp. $p_0(J^P = 0^+)$ $0.9 \cdot 10^{-3}$ $3.8 \cdot 10^{-3}$ $H \rightarrow ZZ^*$ 0.15 0.051 0.060 94.0% All alternative hypotheses 1⁺ assumed 0^+ assumed are disfavored with respect $\operatorname{CL}_{\operatorname{s}}(J^P=1^+)$ Obs. $p_0(J^P = 1^+)$ Obs. $p_0(J^P = 0^+)$ Channel Exp. $p_0(J^P = 0^+)$ Exp. $p_0(J^P = 1^+)$ to the 0⁺ hypothesis. $2.0 \cdot 10^{-3}$ $H \rightarrow ZZ^*$ $4.6 \cdot 10^{-3}$ $1.6 \cdot 10^{-3}$ 0.55 $1.0 \cdot 10^{-3}$ 99.8% $H \rightarrow ZZ^*$ 2^+ assumed assumed 0^+ assumed $CL_{s}(J^{P} = 2^{+})$ Obs. $p_0(J^P = 0^+)$ Obs. $p_0(J^P = 2^+)$ $f_{q\bar{q}}$ Exp. $p_0(J^P = 0^+)$ Exp. $p_0(J^P = 2^+)$ 97.4% 100% 0.102 0.082 0.962 0.001 0.026 96.1% 75% 0.117 0.099 0.003 0.039 0.923 96.5% 50% 0.129 0.113 0.943 0.002 0.035 96.4% 25% 0.125 0.107 0.944 0.002 0.036 0% 0.099 0.092 0.532 0.079 0.169 83.1%

$H \rightarrow WW \rightarrow IvIv$: Introduction

- Restricted to "different flavour" (eµ) events and no jets
 - p_{TI1}>25 GeV and p_{TI2}>15 GeV
 - p_{Ti}>25 GeV for |η|<2.5 (p_{Ti}>30 GeV for 2.5<|η|<4.5)
- Rate analysis already exploits spin-0 nature of SM Higgs boson
 - Relax spin-sensitive requirements
 - (allow spin study while keeping backgrounds under control)
 - E⊤MissRel > 20 GeV
 - m_{ll} < 80 GeV
 - pTII > 20 GeV
 - $-\Delta \phi_{\parallel} < 2.8$
- m_{II} , $\Delta \phi_{II}$, p_{TII} , m_T sensitive to spin
- Two BDT classifiers are used:
 - BDT₀₊: SM Higgs signal against the sum of all backgrounds
 - BDT_{JP}: J^P signal against the sum of all backgrounds
 - Perform 2D-fit in (BDT₀₊,BDT_{JP})
- pT spectrum uncertainties found to have small effect BDT_{JP}

H→WW→lvlv: Spin/CP sensitive variables

K. Nikolopoulos

November 18th, 2013 Higgs boson physics with ATLAS

H→WW→IvIv: BDT output

H→WW→lvlv : Post-fit output

K. Nikolopoulos

Higgs boson physics with ATLAS November 18th, 2013

UNIVERSITY^{OF} BIRMINGHAM 48

$H \rightarrow WW \rightarrow IvIv: LLR 0^+ vs 1^\pm and 2^+$

H→WW→lvlv: Results Overview

Channel	1 ⁺ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 1^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 1^+)$	$CL_{s}(J^{P} = 1^{+})$	-
$H \rightarrow WW^*$	0.11	0.08	0.70	0.02	0.08	92%
Channel	1 ⁻ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 1^-)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 1^-)$	$CL_{s}(J^{P} = 1^{-})$	-
$H \rightarrow WW^*$	0.06	0.02	0.66	0.006	0.017	98.3%

 $H \rightarrow WW^*$

$f_{q\bar{q}}$	$2^+ \text{ assumed} \\ \text{Exp. } p_0(J^P = 0^+)$	0 ⁺ assumed Exp. $p_0(J^P = 2^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 2^+)$	$CL_{s}(J^{P} = 2^{+})$	
100%	0.013	$3.6 \cdot 10^{-4}$	0.541	$1.7 \cdot 10^{-4}$	$3.6 \cdot 10^{-4}$	>99 9%
75%	0.028	0.003	0.586	0.001	0.003	99.7%
50%	0.042	0.009	0.616	0.003	0.008	99.2%
25%	0.048	0.019	0.622	0.008	0.020	98.0%
0%	0.086	0.054	0.731	0.013	0.048	95.2%

All alternative hypotheses are disfavored with respect to the 0⁺ hypothesis.

Combination

Channel	$H \to ZZ^{(*)} \to 4\ell$	$H \to WW^{(*)} \to \ell \nu \ell \nu$	$H \rightarrow \gamma \gamma$
Dataset	$20.7 \text{ fb}^{-1} @ 8 \text{ TeV}$	$20.7 \text{ fb}^{-1} @ 8 \text{ TeV}$	$20.7 \text{ fb}^{-1} @ 8 \text{ TeV}$
	$4.8 { m ~fb^{-1}} @ 7 { m ~TeV}$		
Reference	ATLAS-CONF-2013-013	ATLAS-CONF-2013-031	ATLAS-CONF-2013-029
Signal	JHU⊕PYTHIA	PowHeg/JHU⊕PYTHIA	PowHeg/JHU⊕PYTHIA
0-	\checkmark	_	-
1+	\checkmark	\checkmark	-
1-	\checkmark	\checkmark	-
2^+	\checkmark	\checkmark	\checkmark

A note on systematic uncertainties:

- e/µ reconstruction, identification and trigger efficiencies and energy/momentum

resolution uncertainties correlated between $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow WW^* \rightarrow IvIv$

- e/γ energy scale correlated across all channels
- effect of mass measurement uncertainty negligible
- overall impact (by comparing results w/ and w/o profiling) estimated to be $<0.3\sigma$
- Higgs boson p_T spectrum small effect <0.1σ

Combination: The case of 0⁺ vs 2⁺

K. Nikolopoulos

November 18th, 2013 Higgs boson physics with ATLAS

Combination: Results Overview

Rare/Anomalous decays

"Rare" Higgs boson decays

"Invisible" Higgs boson decays

"Invisible" decays are suppressed in SM \rightarrow Observation would be direct indication of New Physics!

Higgs boson physics prospects

Prospects for Run II/III and HL-LHC

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

BIRMINGHAM 58

Summary

Convinced, beyond reasonable doubt, of the observation of a boson with $m_H \sim 125.5 \text{ GeV}$ Production rates in channels involving vector bosons in good agreement with Standard Model expectation. $\mu = 1.33^{+0.21}$ -0.18 and $\mu_{VBF+VH}/\mu_{ggF+ttH} = 1.4^{+0.7}$ -0.5 [3.3 σ evidence for VBF Higgs boson production, >5 σ (indirect) evidence for Higgs coupling to fermions]

Searches for rare/anomalous decays and differential cross-sections have begun to appear

Additional slides

A Toroidal LHC ApparatuS (2011)

⇒ General purpose detector designed for the harsh LHC environment

⇒ Very important to ensure high data-taking efficiency/quality

ATLAS p-p run: March-October 2011

Inner Tracker		Calorimeters		Muon Spectrometer			Magnets			
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.8	99.6	99.2	96.9	99.2	99.4	98.8	99.4	99.1	99.8	99.3
All good for physics: 89.9%										
Lucia site established established entries and even and even its data delivery during 2014 stable because is an estimated at										

Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at vs=7 TeV between March 13th and October 30th (in %) - corresponding to 5.2 fb⁻¹ of recorded data. This data quality status refers to the data after the summer reprocessing campaign.

	ATLAS
Magnets	2T solenoid, 3 air-core toroids
Tracking	silicon + transition radiation tracker
EM Calorimetry	sampling LAr technology
Hadron Calorimetry	plastic scintillator (barrel) LAr technology (endcap)
Muon	independent system with trigger capabilities
Trigger	3 Level Implementation from 40 MHz to 400 Hz

K. Nikolopoulos

Higgs boson physics with ATLAS

High Energy Physics Particle detectors

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

ATLAS Performance: Photons and EM response

Higgs boson physics with ATLAS

BIRMINGHAM 63

ATLAS Performance: Jets and Missing ET

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

UNIVERSITYOF BIRMINGHAM 64

т-leptons and b-jets

The **T**-lepton is special!

Mass of 1.78 GeV and $cT = 87.1 \mu m$,

the only lepton that decays in our

detector, in various ways...

n data	$\tau \rightarrow Ivv \sim 35\%$
--------	----------------------------------

 $\tau \rightarrow hadrons \sim 65\%$

BIRMINGHAM 65

K. Nikolopoulos

$H \rightarrow \gamma \gamma$: $m_{\gamma \gamma}$ resolution

$H \rightarrow \gamma \gamma$: $m_{\gamma \gamma}$ resolution

• LHC beam spot $\sigma_z \sim 5-6$ cm and O(20) vertices \rightarrow identify "primary" vertex challenging Use the strengths of the detector!

- Build likelihood to identify the primary vertex using
 - longitudinal/lateral segmentation of EM calorimeter (photon pointing) $\rightarrow \sigma_z \sim 1.5$ cm
 - use beam-spot constraint/converted photon tracks
 - reconstructed vertex $\Sigma(pT)^2$
- Recently a Neural Network has ben employed (including also the $\Sigma(pT)$, $\Delta \phi$ between the direction of the tracks and the di-photon system)
- pile-up robust
- contribution of angular term to m_{yy} resolution negligible

 $m_{\gamma\gamma}^2 = 2E_1E_2(1-\cos\alpha)$ z

K. Nikolopoulos

Higgs boson physics with ATLAS

$H \rightarrow \gamma \gamma$: Event Categories

8 TeV (90% signal window)

K. Nikolopoulos

November 18th, 2013

BIRMINGHAM 68

H→yy: BDT Response

BDT: m_{jj}, η_{j1} , η_{j2} , $\Delta \eta_{jj}$, p_{Tt} , $\Delta \phi_{\gamma\gamma;jj}$, $\eta^* = \eta_{\gamma\gamma} - (\eta_{j1} + \eta_{j2})/2 \Delta Rmin_{\gamma j}$

$H \rightarrow \gamma \gamma$: $m_{\gamma \gamma}$ spectra

$H \rightarrow \gamma \gamma$: Signal Strength

Signal strength (μ) = (signal rate from data) / (expected SM signal rate at m_H)

Higgs boson differential cross-sections

ATLAS-CONF-2013-072

K. Nikolopoulos

$H \rightarrow ZZ^{(*)} \rightarrow 4I$: Mass resolution

H→ZZ^(*)→4I: Backgrounds

K. Nikolopoulos

Higgs boson physics with ATLAS

$H \rightarrow ZZ^{(*)} \rightarrow 4I$: Couplings

The couplings of the Higgs boson are probed by further categorizing the observed events.

- VBF-like events : Events with at least two jets in VBF topology
- VH-like events : Events with additional leptons in the final state
- ggF-like events: All remaining events

$H \rightarrow WW^{(*)} \rightarrow IvIv$: Event Selection

Table 2: Selection listing for 8 TeV data. The criteria specific to $e\mu + \mu e$ and $ee + \mu\mu$ are noted as such; otherwise, they apply to both. Pre-selection applies to all N_{jet} modes. The rapidity gap is the y range spanned by the two leading jets. The $m_{\ell\ell}$ split is at 30 GeV. The modifications for the 7 TeV analysis are given in Section 6 and are not listed here. Energies, masses, and momenta are in units of GeV.

Category	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$		
Pre-selection	Two isolated leptons ($\ell = e, \mu$) with opposite charge Leptons with $p_T^{\text{lead}} > 25$ and $p_T^{\text{sublead}} > 15$ $e\mu + \mu e: m_{\ell\ell} > 10$ $ee + \mu\mu: m_{\ell\ell} > 12, m_{\ell\ell} - m_Z > 15$				
Missing transverse momentum and hadronic recoil	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.05$	$e\mu + \mu e: E_{T,rel}^{miss} > 25$ $ee + \mu\mu: E_{T,rel}^{miss} > 45$ $ee + \mu\mu: p_{T,rel}^{miss} > 45$ $ee + \mu\mu: f_{recoil} < 0.2$	$e\mu + \mu e: E_{\rm T}^{\rm miss} > 20$ $ee + \mu\mu: E_{\rm T}^{\rm miss} > 45$ $ee + \mu\mu: E_{\rm T,STVF}^{\rm miss} > 35$		
General selection	$ \Delta \phi_{\ell\ell,MET} > \pi/2$ $p_{\rm T}^{\ell\ell} > 30$	$N_{b-jet} = 0$ - $e\mu + \mu e: Z/\gamma^* \to \tau\tau \text{ veto}$	$N_{b-jet} = 0$ $p_{T}^{tot} < 45$ $e\mu + \mu e: Z/\gamma^* \rightarrow \tau\tau \text{ veto}$		
VBF topology			$m_{jj} > 500$ $ \Delta y_{jj} > 2.8$ No jets ($p_{\rm T} > 20$) in rapidity gap Require both ℓ in rapidity gap		
$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ topology	$m_{\ell\ell} < 50$ $ \Delta \phi_{\ell\ell} < 1.8$ $e\mu + \mu e: \text{ split } m_{\ell\ell}$ Fit m_{T}	$m_{\ell\ell} < 50$ $ \Delta \phi_{\ell\ell} < 1.8$ $e\mu + \mu e: \text{ split } m_{\ell\ell}$ Fit m_{T}	$m_{\ell\ell} < 60$ $ \Delta \phi_{\ell\ell} < 1.8$ - Fit $m_{\rm T}$		

$H \rightarrow WW^{(*)} \rightarrow VV$

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

$H \rightarrow WW^{(*)} \rightarrow ev\mu v + 2$ jet Event Display

Run 214680, Event 271333760 17 Nov 2012 07:42:05 CET

November 18th, 2013 Higgs boson physics with ATLAS

H→WW^(*)→IvIv: Results 2011+2012

Overview: Mass measurement

Using the high resolution channels only The ATLAS and CMS mass combinations are in good agreement

The Higgs boson mass

Higgs Boson Width

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

Higgs boson mass: CMS H→TT

 $H \rightarrow \tau \tau$ Small sensitivity to the Higgs boson mass

H→bb: Event Selection

Object	0-lepton	1-lepton	2-lepton				
Lontons	0 loose leptons	1 tight lepton	1 medium lepton				
Leptons		$\frac{1 - \text{lepton}}{2 - \text{lepton}} = \frac{2 - \text{lepton}}{1 \text{ tight lepton}} = \frac{2 - \text{lepton}}{1 \text{ medium lept}} + 0 \text{ loose leptons} = \frac{1 \text{ medium lept}}{1 \text{ medium lept}} + 0 \text{ loose leptons} = \frac{1 \text{ loose leptons}}{1 \text{ medium lept}} + 1 \text{ loose lept}} = \frac{2 b - \text{tags}}{2 b - \text{tags}} = \frac{p_T^{\text{jet_1}} > 45 \text{ GeV}}{p_T^{\text{jet_2}} > 20 \text{ GeV}} + \frac{2 1 \text{ extra jets}}{1 \text{ extra jets}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eV}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eX}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eX}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eX}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eX}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eX}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eX}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eX}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eX}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eX}} = \frac{2 b - 1 \text{ extra jets}}{2 \text{ eX}} = 2 b - 1 \text$	+ 1 loose lepton				
	2 <i>b</i> -tags						
Tets		$p_{\rm T}^{\rm jet_1} > 45 {\rm GeV}$					
Jets	$p_{\rm T}^{\rm jet_2} > 20 { m ~GeV}$						
	$+ \le 1$ extra jets						
Missing Fr	$E_{\rm T}^{\rm miss} > 120 { m GeV}$	$E_{\rm T}^{\rm miss} > 25 { m Gev}$	$E_{\rm T}^{\rm miss} < 60 { m GeV}$				
Wiissing L _T	$p_{\rm T}^{\rm miss} > 30 { m ~GeV}$						
	$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < \pi/2$						
	$\min[\Delta \phi(E_{T}^{\text{miss}}, \text{jet})] > 1.5$						
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, b\bar{b}) > 2.8$						
Vector Boson	-	$m_{\rm T}^W < 120 { m GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$				

Table 2: Further topological criteria in p_T^V intervals. The 0-lepton channel does not use the lowest two $p_{\rm T}^V$ intervals.

	$p_{\rm T}^V$ [GeV]	0-90	90-120	120-160	160-200	>200
All Channels	$\Delta R(b, \bar{b})$	0.7-3.4	0.7-3.0	0.7-2.3	0.7-1.8	<1.4
1-lepton	$E_{\rm T}^{\rm miss}$ [GeV]	>25				>50
	$m_{\rm T}^W$ [GeV]	40-120 <12				0

K. Nikolopoulos

Н→тт

ATLAS-CONF-2012-160

K. Nikolopoulos

Higgs boson physics with ATLAS November 18th, 2013

Н⊸тт

- Direct probe of Higgs boson coupling to leptons
- Observable: m_{ττ}
- Backgrounds: Z→TT, diboson, top
- Poor mass resolution (~15%) due to neutrinos
- Separate final states:
 - **T-decays: μe**, μμ, eth, μth, thth
 - jet multiplicities
 - TITI : 2j VBF, Boosted, 2j VH, 1j
 - TITh : 2j VBF, Boosted, 1j, 0j
 - ThTh : VBF, Boosted

95% CL exclusion limit at m_H =125GeV is 1.9(1.2) x SM expectation Local significance at m_H =125GeV is 1.1 σ (1.7 σ) CMS Local significance at m_H =125GeV is 2.85 σ (2.62 σ) CMSRate with respect to SM: 1.1 ± 0.4 @ m_H =125 GeV

Overview of Signal Strength measurements

H→TITI

Table 2: The categorization of the $H \rightarrow \tau_{lep} \tau_{lep}$ analysis. The JVF cut is |JVF| > 0.75 for 7 TeV data, the lepton centrality is not applied for 7 TeV analysis, and the 0-jet category is not used for 8 TeV data analysis.

2-jet VBF	Boosted	2-jet VH	1-jet		
Pre-	selection: exactly two le	eptons with opposite charges			
30	$30 \text{ GeV} < m_{\ell\ell} < 75 \text{ GeV} (30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$				
for same-fi	avor (different-flavor) le	eptons, and $p_{T,\ell 1} + p_{T,\ell 2} > 3$	5 GeV		
At least	one jet with $p_T > 40 \text{ G}$	$eV (JVF_{jet} > 0.5 \text{ if } \eta_{jet} < 2$	2.4)		
$E_{\rm T}^{\rm miss} > 40~{ m Ge}$	$eV(E_{\rm T}^{\rm miss} > 20 \text{ GeV})$ for	r same-flavor (different-flavo	r) leptons		
	$H_{\rm T}^{\rm miss}$ > 40 GeV for	same-flavor leptons			
	0.1 < 2	$x_{1,2} < 1$			
$0.5 < \Delta \phi_{\ell\ell} < 2.5$					
$n_{\rm T} = 25 {\rm GeV} ({\rm IVF})$	excluding 2 jet VBE	$n_{\rm T} \sim 25 {\rm GeV} ({\rm IVF})$	excluding 2-jet VBF,		
$p_{T,j2} > 23 \text{ GeV} (J \text{ V} \text{ I})$	excluding 2-jet v DI	$p_{T,j2} > 25 \text{ OCV } (J \text{ V} T)$	Boosted and 2-jet VH		
$\Delta \eta_{jj} > 3.0$	$p_{T,\tau\tau} > 100 {\rm GeV}$	excluding Boosted	$m_{\tau\tau j} > 225 \text{ GeV}$		
$m_{jj} > 400 {\rm GeV}$	<i>b</i> -tagged jet veto	$\Delta \eta_{jj} < 2.0$	<i>b</i> -tagged jet veto		
b-tagged jet veto		$30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$			
Lepton centrality and CJV		<i>b</i> -tagged jet veto	_		
	0-jet (7 1	TeV only)			
Pre-selection: exactly two leptons with opposite charges					
Different-flavor leptons with 30 GeV < $m_{\ell\ell}$ < 100 GeV and $p_{T,\ell 1} + p_{T,\ell 2}$ > 35 GeV					
$\Delta \phi_{\ell\ell} > 2.5$					
	b-tagged	l jet veto			

H→TITh

Table 3: Event requirements applied in the different categories of the $H \rightarrow \tau_{lep} \tau_{had}$ analysis. Requirements marked with a triangle (>) are categorization requirements, meaning that if an event fails that requirement it is still considered for the remaining categories. Requirements marked with a bullet (•) are only applied to events passing all categorization requirements in a category; events failing such requirements are discarded.

7 Te	W.	8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	_	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
$\triangleright \geq 2$ jets	▶ $p_{\rm T}^{\rm H}$ > 100 GeV	$\triangleright \geq 2$ jets	▶ $p_{\rm T}^{\rm H} > 100 {\rm GeV}$	
▶ $p_{\rm T}^{j1}, p_{\rm T}^{j2} > 40 \text{ GeV}$	▶ $0 < x_1 < 1$	▶ $p_{\rm T}^{j1} > 40, p_{\rm T}^{j2} > 30 {\rm GeV}$	▶ $0 < x_1 < 1$	
► $\Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	
$> m_{jj} > 500 \text{ GeV}$	▹ Fails VBF	$ ightarrow m_{jj} > 500 \text{ GeV}$	▹ Fails VBF	
▶ centrality req.	-	▷ centrality req.	-	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	
▶ $p_{\rm T}$ ^{Total} < 40 GeV	-	$\triangleright p_{\mathrm{T}}^{\mathrm{Total}} < 30 \mathrm{GeV}$	-	
_	-	$\triangleright p_{\mathrm{T}}^{\ell} > 26 \mathrm{GeV}$	_	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
_	_	• <i>b</i> -tagged jet veto	• <i>b</i> -tagged jet veto	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ \geq 1 jet, $p_{\rm T}$ >25 GeV	▶ 0 jets $p_{\rm T}$ >25 GeV	$\triangleright \geq 1$ jet, $p_{\rm T} > 30$ GeV	\triangleright 0 jets $p_{\rm T}$ >30 GeV	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
▶ Fails VBF, Boosted	▹ Fails Boosted	▶ Fails VBF, Boosted	▶ Fails Boosted	
• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <30 GeV	• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
_	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	-	$\bullet p_{\rm T}^\ell - p_{\rm T}^\tau < 0$	

H→ThTh

Table 4: Summary of the event selection and categories for the $H \rightarrow \tau_{had} \tau_{had}$ channel.

Cut	Description						
Preselection	No muons or electrons in the event						
	Exactly 2 medium τ_{had} candidates matched with the trigger objects						
	At least 1 of the τ_{had} candidates identified as tight						
	Both τ_{had} candidates are from the same primary vertex						
	Leading $\tau_{had-vis}$ $p_T > 40$ GeV and sub-leading $\tau_{had-vis}$ $p_T > 25$ GeV, $ \eta < 2.5$						
	τ_{had} candidates have opposite charge and 1- or 3-tracks						
	$0.8 < \Delta R(\tau_1, \tau_2) < 2.8$						
	$\Delta \eta(\tau, \tau) < 1.5$						
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.2\pi$						
VBF	At least two tagging jets, j_1 , j_2 , leading tagging jet with $p_T > 50$ GeV						
	$\eta_{j1} \times \eta_{j2} < 0, \ \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV						
	$\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$						
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$						
Boosted	Fails VBF						
	At least one tagging jet with $p_T > 70(50)$ GeV in the 8(7) TeV dataset						
	$\Delta R(\tau_1,\tau_2) < 1.9$						
	$E_{\rm T}^{\rm miss} > 20 { m GeV}$						
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.1\pi$.						

Н→тт

- Direct probe of Higgs boson coupling to leptons
- Observable: m_{TT}
- Backgrounds: $Z \rightarrow \tau \tau$, diboson, top
- Poor mass resolution (~15%) due to neutrinos
- Separate final states:
 - T-decays: μe , $\mu \mu$, $e T_h$, μT_h , $T_h T_h$
 - jet multiplicities: 1, 2

H→тт: Results

H→тт: Event Display VBF-like candidate

ATLAS Spin/CP studies: The scenarios

arXiv:1001.3396

Spin determination of single-produced resonances at hadron colliders

Spin/CP studies following formalism of arXiv:1001.3396 and arXiv:1208.4018

Currently study pure spin/CP states

• Ultimate goal: determine helicity amplitudes and observe/ constraint admixtures (potentially CP-violation)

Yanyan Gao,^{1,2} Andrei V. Gritsan,¹ Zijin Guo,¹ Kirill Melnikov,¹ Markus Schulze,¹ and Nhan V. Tran¹

¹Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA ²Fermi National Accelerator Laboratory (FNAL), Batavia, IL, USA (Dated: submitted on January 19, 2010; revised on March 12, 2010)

We study the production of a single resonance at the LHC and its decay into a pair of Z bosons. We demonstrate how full reconstruction of the final states allows us to determine the spin and parity of the resonance and restricts its coupling to vector gauge bosons. Full angular analysis is illustrated with the simulation of the production and decay chain including all spin correlations and the most general couplings of spin-zero, -one, and -two resonances to Standard Model matter and gauge fields. We note implications for analysis of a resonance decaying to other final states.

PACS numbers: 12.60.-i, 13.88.+e, 14.80.Bn

spin-0
$$A(X \to V_1 V_2) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_X^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right)$$

TABLE I: The list of scenarios chosen for the analysis of the production and decay of an exotic X particle with quantum numbers J^P . For the two 2⁺ cases, the superscripts m (minimal) and L (longitudinal) distinguish two scenarios, as discussed in the last column. When relevant, the relative fraction of gg and $q\bar{q}$ production is taken to be 1:0 at $m_X = 250$ GeV and 3:1 at $m_X = 1$ TeV. The spin-zero X production mechanism does not affect the angular distributions and therefore is not specified.

scenario (J^P)	$X \to ZZ$ decay parameters	X production parameters	comments
0+	$a_1 \neq 0$ in Eq. (2)	gg o X	SM Higgs-like scalar
0-	$a_3 \neq 0$ in Eq. (2)	gg o X	pseudo-scalar
1+	$g_{12} eq 0$ in Eq. (4)	$qar{q} ightarrow X$: $ ho_{\scriptscriptstyle 11}, ho_{\scriptscriptstyle 12} eq 0$ in Eq. (9)	exotic pseudo-vector
1-	$g_{11} eq 0$ in Eq. (4)	$qar{q} ightarrow X$: $ ho_{\scriptscriptstyle 11}, ho_{\scriptscriptstyle 12} eq 0$ in Eq. (9)	exotic vector
2_m^+	$g_1^{(2)} = g_5^{(2)} \neq 0$ in Eq. (5)	$gg \rightarrow X$: $g_1^{(2)} \neq 0$ in Eq. (5)	Graviton-like tensor with minimal couplings
		$q\bar{q} \rightarrow X: \rho_{21} \neq 0$ in Eq. (10)	
\mathbf{X} 2_L^+	$c_2 \neq 0$ in Eq. (6)	$gg \to X: g_2^{(2)} = g_3^{(2)} \neq 0$ in Eq. (5)	Graviton-like tensor longitudinally polarized
		$q\bar{q} \to X: \rho_{21}, \rho_{22} \neq 0$ in Eq. (10)	and with $J_z = 0$ contribution
X 2 ⁻	$g_8^{(2)} = g_9^{(2)} \neq 0$ in Eq. (5)	$gg \to X: g_1^{(2)} \neq 0$ in Eq. (5)	"pseudo-tensor"
▼ . ²		$q\bar{q} \to X: \ \rho_{21}, \ \rho_{22} \neq 0 \ \text{in Eq.} \ (10)$	

$H \rightarrow yy$: Analysis procedure

- Analysis similar to "rate/mass" analysis but optimized selection:
 - p_{Tv1} > 0.35 m_{vv} and p_{Tv2} > 0.25 m_{vv}
 - Minimize $m_{\gamma\gamma}$ and $\cos\theta^*$ correlations for background
 - Residual correlations at 0.6% (2%) level for $|\cos\theta^*| < (>)0.8$
- $H \rightarrow \gamma \gamma$ is a low S/B final state (inclusive ~3%)
 - Simultaneous fit to m_{vv} and $|\cos\theta^*|$ in signal region
 - m_{vv} in side-bands
- m_{vv} modeling similar to rate analysis
 - Signal : Crystal-Ball (describe ~95% of events) and Gauss
 - Background : 5th order polynomial
- $\cos\theta^*$ modeling
 - Signal : derived from MC

For SM correct for interference between $gg \rightarrow \gamma\gamma$ and signal (important for $|\cos\theta^*| > 0.8$)

For 2⁺ no description for such effect, neglect.

- Background : $|\cos\theta^*|$ distribution from m_{vv} side-bands
- p_T spectrum: reweight spin-2 state to SM PowHeg (HqT), full size of correction as systematic

side-band statistics: 1% (3%) for $|\cos\theta^*| < (>)0.8$ residual correlations: 0.6% (2%) for $|\cos\theta^*| < (>)0.8$

$H \rightarrow \gamma \gamma$: Alternative method

Higgs boson physics with ATLAS November 18th, 2013

H→ZZ→4I : Publication

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

UNIVERSITY^{of} BIRMINGHAM 99

$H \rightarrow ZZ \rightarrow 4I$: Distributions of discriminants

$H \rightarrow ZZ \rightarrow 4I : LLR 0^+ vs 0^-, 1^+, 2^+$

K. Nikolopoulos

Higgs boson physics with ATLAS

$H \rightarrow ZZ \rightarrow 4I$: BDT and J^{P} -MELA discriminants

K. Nikolopoulos

Higgs boson physics with ATLAS

BIRMINGHAM102

H→ZZ→4I : LLR 0⁺ vs 0⁻, 1⁺, 2⁺

H→WW→lvlv: Data/MC in the Signal Region

After full selection 3615 candidate events 3300 background expected 170 SM Higgs boson expected

K. Nikolopoulos

Higgs boson physics with ATLAS

H→WW→IvIv: Spin/CP sensitive variables

K. Nikolopoulos

Higgs boson physics with ATLAS

November 18th, 2013

UNIVERSITY^{of} BIRMINGHAM105

Combination: The case of 0⁺ vs 2⁺

K. Nikolopoulos

November 18th, 2013

Amplitudes

Spin-0 \rightarrow two gauge bosons $A(X \to VV) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_X^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right)$ Spin-1 \rightarrow two gauge bosons $A(X \to ZZ) = g_1^{(1)} \left[(\epsilon_1^* q) (\epsilon_2^* \epsilon_X) + (\epsilon_2^* q) (\epsilon_1^* \epsilon_X) \right] + g_2^{(1)} \epsilon_{\alpha\mu\nu\beta} \epsilon_X^{\alpha} \epsilon_1^{*,\mu} \epsilon_2^{*,\nu} \tilde{q}^{\beta}$ Spin-2 \rightarrow two gauge bosons $A(X \to VV) = \Lambda^{-1} \left[2g_1^{(2)} t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2g_2^{(2)} t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*1,\mu\alpha} f^{*2,\nu,\beta} \right]$ $+g_{3}^{(2)}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f_{\mu\alpha}^{*2}+f^{*2,\mu\nu}f_{\mu\alpha}^{*1})+g_{4}^{(2)}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f_{\alpha\beta}^{*(2)}$ $+m_{V}^{2}\left(2g_{5}^{(2)}t_{\mu\nu}\epsilon_{1}^{*\mu}\epsilon_{2}^{*\nu}+2g_{6}^{(2)}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}\left(\epsilon_{1}^{*\nu}\epsilon_{2}^{*\alpha}-\epsilon_{1}^{*\alpha}\epsilon_{2}^{*\nu}\right)+g_{7}^{(2)}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon_{1}^{*}\epsilon_{2}^{*}\right)$ $\left. + g_8^{(2)} \frac{\tilde{q}_\mu \tilde{q}_\nu}{\Lambda 2} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + g_9^{(2)} t_{\mu\alpha} \tilde{q}^\alpha \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^\sigma + \frac{g_{10}^{(2)} t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda 2} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma \left(\epsilon_1^{*\nu} (q\epsilon_2^*) + \epsilon_2^{*\nu} (q\epsilon_1^*) \right) \right|$ Spin-1 \rightarrow two fermions $A(X_{J=1} \to q\bar{q}) = \epsilon^{\mu} \bar{u}_{q_1} \left(\gamma_{\mu} \left(\rho_1^{(1)} + \rho_2^{(1)} \gamma_5 \right) + \frac{m_q \tilde{q}_{\mu}}{\Lambda^2} \left(\rho_3^{(1)} + \rho_4^{(1)} \gamma_5 \right) \right) v_{q_2},$ Spin-2 \rightarrow two fermions $A(X_{J=2} \to q\bar{q}) = \frac{1}{\Lambda} t^{\mu\nu} \bar{u}_{q_1} \left(\gamma_{\mu} \tilde{q}_{\nu} \left(\rho_1^{(2)} + \rho_2^{(2)} \gamma_5 \right) + \frac{m_q \tilde{q}_{\mu} \tilde{q}_{\nu}}{\Lambda^2} \left(\rho_3^{(2)} + \rho_4^{(2)} \gamma_5 \right) \right) v_{q_2}$

Combination: Results Overview

0⁺ vs 0⁻

Channel	0 ⁻ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 0^-)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 0^-)$	$CL_{s}(J^{P}=0^{-})$	
$H \rightarrow ZZ^*$	$1.5 \cdot 10^{-3}$	$3.7 \cdot 10^{-3}$	0.31	0.015	0.022	97.8%

0⁺ vs 1⁺

Channel	1 ⁺ assumed Exp. $p_0(J^P = 0^+)$	0 ⁺ assumed Exp. $p_0(J^P = 1^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 1^+)$	$CL_{s}(J^{P} = 1^{+})$	
$H \rightarrow ZZ^*$	$4.6 \cdot 10^{-3}$	$1.6 \cdot 10^{-3}$	0.55	$1.0 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$	
$H \to WW^*$	0.11	0.08	0.70	0.02	0.08	
Combination	$2.7 \cdot 10^{-3}$	$4.7 \cdot 10^{-4}$	0.62	$1.2 \cdot 10^{-4}$	$3.0 \cdot 10^{-4}$	>99.9%

0⁺ vs 1⁻

Channel	1^{-} assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 1^-)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 1^-)$	$CL_{s}(J^{P} = 1^{-})$	
$H \rightarrow ZZ^*$	$0.9 \cdot 10^{-3}$	$3.8 \cdot 10^{-3}$	0.15	0.051	0.060	
$H \to WW^*$	0.06	0.02	0.66	0.006	0.017	
Combination	$1.4 \cdot 10^{-3}$	$3.6 \cdot 10^{-4}$	0.33	$1.8 \cdot 10^{-3}$	$2.7 \cdot 10^{-3}$	99.7%

0⁺ vs 2⁺

$f_{q\bar{q}}$	2 ⁺ assumed Exp. $p_0(J^P = 0^+)$	0 ⁺ assumed Exp. $p_0(J^P = 2^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 2^+)$	$CL_{s}(J^{P} = 2^{+})$	-
100%	$3.0 \cdot 10^{-3}$	$8.8 \cdot 10^{-5}$	0.81	$1.6 \cdot 10^{-6}$	$0.8 \cdot 10^{-5}$	-
75%	$9.5 \cdot 10^{-3}$	$8.8 \cdot 10^{-4}$	0.81	$3.2 \cdot 10^{-5}$	$1.7 \cdot 10^{-4}$	>99.9%
50%	$1.3 \cdot 10^{-2}$	$2.7 \cdot 10^{-3}$	0.84	$8.6 \cdot 10^{-5}$	$5.3 \cdot 10^{-4}$	for all fqq
25%	$6.4 \cdot 10^{-3}$	$2.1 \cdot 10^{-3}$	0.80	$0.9 \cdot 10^{-4}$	$4.6 \cdot 10^{-4}$	
0%	$2.1 \cdot 10^{-3}$	$5.5 \cdot 10^{-4}$	0.63	$1.5 \cdot 10^{-4}$	$4.2 \cdot 10^{-4}$	

K. Nikolopoulos

Higgs boson physics with ATLAS November 18th, 2013

Overview: Coupling studies

Assuming that:

- the resonance corresponds to a CP-even boson
 - no contributions beyond the Standard Model
- deviations of vector boson couplings to the Higgs described by one overall scaling (κ_V)
 - deviations of fermion couplings to the Higgs described by one overall scaling (κ_F)

Data compatible with the Standard Model expectation for both experiments

K. Nikolopoulos

"Invisible" Higgs boson decays prospects

"Invisible" decays are suppressed in SM \rightarrow Observation would be direct indication of New Physics!

Expected yields	300 fb^{-1}	3000 fb^{-1}
ZZ	1321 ± 53	12000 ± 500
WZ	440 ± 2	4501 ± 22
WW	0.9 ± 0.9	52 ± 21
Тор	127 ± 37	1810 ± 440
Z+jets	172 ± 87	82000 ± 6100
Signal (125 GeV, BR($H \rightarrow \text{inv.}$)=20%)	154 ± 2	1379 ± 21

BR($H \rightarrow inv.$) limits at 95% (90%) CL	300 fb^{-1}	3000 fb^{-1}
Realistic scenario	23% (19%)	8.0% (6.7%)
Conservative scenario	32% (27%)	16% (13%)

Prospects for Run II/III and HL-LHC

Higgs boson physics with ATLAS

Prospects for Run II/III and HL-LHC

$\Delta \mu / \mu$	300 fb ⁻¹		3000 fb ⁻¹	
	All unc.	No theory unc.	All unc.	No theory unc.
$H \rightarrow \mu\mu \text{ (comb.)}$	0.39	0.38	0.15	0.12
(incl.)	0.47	0.45	0.19	0.15
(<i>ttH</i> -like)	0.73	0.72	0.26	0.23
$H \rightarrow \tau \tau$ (VBF-like)	0.22	0.16	0.19	0.12
$H \rightarrow ZZ \text{ (comb.)}$	0.12	0.06	0.10	0.04
(VH-like)	0.32	0.31	0.13	0.12
(<i>ttH</i> -like)	0.46	0.44	0.20	0.16
(VBF-like)	0.34	0.31	0.21	0.16
(ggF-like)	0.13	0.06	0.12	0.04
$H \rightarrow WW$ (comb.)	0.13	0.08	0.09	0.05
(VBF-like)	0.21	0.20	0.12	0.09
(+1j)	0.36	0.17	0.33	0.10
(+0j)	0.20	0.08	0.19	0.05
$H \rightarrow Z\gamma$ (incl.)	1.47	1.45	0.57	0.54
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.14	0.09	0.10	0.04
(VH-like)	0.77	0.77	0.26	0.25
(<i>ttH</i> -like)	0.55	0.54	0.21	0.17
(VBF-like)	0.47	0.43	0.21	0.15
(+1j)	0.37	0.14	0.37	0.05
(+0j)	0.22	0.12	0.20	0.05

Table 17: Relative uncertainty on the signal strength μ for the combination of Higgs analysis at 14 TeV, 300 fb⁻¹ (left) and 3000 fb⁻¹ (right), assuming a SM Higgs Boson with a mass of 125 GeV. For both 300 and 3000 fb⁻¹ the first column shows the results including current theory systematic uncertainties, while the second column shows the uncertainties obtained using only the statistical and experimental systematic uncertainties. The abbreviation "(comb.)" indicates that the precision on μ is obtained from the combination of the measurements from the different experimental sub-categories for the same final state, while "(incl.)" indicates that the measurement from the inclusive analysis was used.

Coupling Expectations

ATLAS Simulation Preliminary

Figure 23: Relative uncertainty on the expected precision for the determination of coupling scale factor ratios λ_{XY} in a generic fit without assumptions, assuming a SM Higgs Boson with a mass of 125 GeV and LHC at 14 TeV, 300 fb⁻¹ and 3000 fb⁻¹. The hashed areas indicate the increase of the estimated error due to current theory systematics uncertainties. The numerical values can be found in model Nr. 5 in Table 19.

$$f_{g_i} = \frac{|g_i|^2 \sigma_i}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4}; \quad \phi_{g_i} = \arg\left(\frac{g_i}{g_1}\right)$$

$$f_{g_i} = \frac{r_{i1}^2}{1 + r_{i1}^2}, \quad \phi_{g_i} = \arg\left(\frac{g_i}{g_1}\right), \quad \text{where} \quad r_{31}^2 \approx 0.16 \frac{|g_4|^2}{|g_1|^2} \quad \text{and} \quad r_{21}^2 \approx 0.382 \frac{|g_2|^2}{|g_1|^2}.$$

A Toroidal LHC ApparatuS

 \Rightarrow General purpose detector designed for the harsh LHC environment

	ATLAS
Magnets	2T solenoid, 3 air-core toroids
Tracking	silicon + transition radiation tracker
EM Calorimetry	sampling LAr technology
Hadron Calorimetry	plastic scintillator (barrel) LAr technology (endcap)
Muon	independent system with trigger capabilities

K. Nikolopoulos

$H \rightarrow \gamma \gamma$: cos θ^* / m_{yy} residual correlations

Figure 7: Residual correlations between the invariant mass $m_{\gamma\gamma}$ and $|\cos\theta^*|$, from the ratio of the background models of $|\cos\theta^*|$ in the alternative and the nominal analyses. The background model in the nominal analysis is given by the normalised distribution of $|\cos\theta^*|$, built from all events belonging to the sidebands (105 GeV $< m_{\gamma\gamma} < 122$ GeV and 130 GeV $< m_{\gamma\gamma} < 160$ GeV). For the alternative analysis, the distribution corresponds to the estimated number of background events in the signal region $(122 < m_{\gamma\gamma} < 130$ GeV) in each bin, normalised by their sum. The number of events in the signal region in each bin is estimated from a fit to the invariant mass sidebands, using exponentials of second degree polynomials for the first nine bins and a third degree polynomial for the last bin. The orange and blue bands correspond, respectively, to the statistical uncertainty from the sidebands and the total uncertainty on the background model in the nominal analysis. The total uncertainty includes, in addition to the statistical errors, systematic uncertainties from the residual correlations between the invariant mass $m_{\gamma\gamma}$ and $|\cos\theta^*|$ estimated from Monte Carlo simulations. The compatibility of the ratio with the line at one implies that no significant correlation between $m_{\gamma\gamma}$ and $|\cos\theta^*|$, within the current precision, is observed in the data.

