Thermonuclear eruptions and their astrophysical role in the SKA era

Valério A. R. M. Ribeiro Instituto de Telecomunicações

Investigador FCT

valerio.ribeiro@av.it.pt

- In stars, we can describe the random motions of particles due to kinetic energy
- At about 10⁶ K short fusion episodes can start occurring during gravitational contraction (proton-capture reactions by light elements)
- At about 10⁷ K we can actually start to fuse hydrogen in the central regions
- Once hydrogen is exhausted near the centre, the star departs from hydrostatic equilibrium. Core contracts and outer layers expand in size
- At about 10⁸ K helium can fuse at the core, releasing energy that stabilises the star against further contraction

José 2015, Stellar Explosions: Hydrodynamics and Nucleosynthesis

Thermonuclear reaction in a nova eruptions

 M_{int}/M_{WD} - 1

• Conditions for degeneracy demand that thermal energy of the electrons is smaller than the Fermi energy

$$\frac{T}{\rho^{2/3}} < 1.3 \text{x} 10^5 \left(\frac{Z}{A}\right)^{2/3} \text{K cm}^2 \text{g}^{-2/3}$$

- As matter piles up on the surface
 - The matter is compressed
 - Electrons at the bottom of envelope become degenerate
 - Initial burning (1.5x $10^7\ K)$ during accretion follows the ppchain and must include the pep reaction
- Temperature at base of hydrogen rich envelope rises (energy rate production $\propto T^4$)
 - When ${\sim}2x10^7 \text{K}$, hydrogen ignites in a thin shell by CNO reactions cycle
- As energy is released, temperature rises exponentially (T^{16})
 - Due to degeneracy pressure
 - However, limited to ${\sim}10^8 {\rm K}$ due to β^+ unstable nuclei degeneracy is quenched
 - Now gas behaves as an ideal gas and a shell can expand

José 2015, Stellar Explosions: Hydrodynamics and Nucleosynthesis

 M_{int}/M_{WD} - 1

- Thermonuclear explosions on the surface of a white dwarf star $P_{\text{crit}} = \frac{GM_{\text{wd}}}{4\pi R_{\text{wd}}^4} \Delta M_{\text{env}}$
- The most common stellar explosions in the local universe expelling heavy elements
- Galactic rate ~35/yr
- Non-disruptive event, therefore can recur

- Credit: NASA's Goddard Space Flight Centre
- Laboratories for mixing mechanisms, nebular shaping, clumping mechanism, dust formation
- Understanding binary stellar evolution, progenitors of Type Ia supernovae...

Holistic view of novae

Holistic view of novae

- Common-envelope phase (e.g. Livio et al. 1990, ApJ, 356, 250; Lloyd et al. 1997, MNRAS, 273, 137)
- The rotation of the WD (Kippenhahn & Thomas 1978, A&A, 63, 265)
- Localised termo. runaway (Shara 1982, ApJ, 261, 649)
- When common-envelope and the WD rotation are combined the observed prolate remnants can be replicated (Porter et al. 1998, MNRAS, 296, 943)
- Multiple-episodes of ejection (Nelson et al. 2014, ApJ, 785, 78)?

Nova V959 Mon (2012) Credit: SKA South Africa

Radio observations of novae

Chomiuk, ..., **Ribeiro** et al. 2014, Nature, 514, 339 Credit: B. Saxton, NRAO/AUI/NSF

Nova V959 Mon (2012)

Credit: SKA South Africa

In preparation with Jeno Sokoloski at Columbia University

Chomiuk, ..., **Ribeiro** et al. 2014, Nature, 514, 339 Credit: B. Saxton, NRAO/AUI/NSF

Non-thermal emission

Type Ia Supernovae

Credit: http://inferno.berkeley.edu/index.php/kasen/supernovae/

Type Ia Supernovae

Chomiuk et al. 2016, ApJ, 821, 119 Chomiuk et al. 2012, ApJ, 750, 164

> Pérez-Torres et al. 2014, ApJ, 792, 38 Chomiuk et al. 2012 ApJ, 750, 164

Mass loss rate (M_{\odot} yr $^{-1}$)

Locally relevant?

The tip of the iceberg

Woudt et al. 2009, Astrophysical Journal, 706, 738

- V455 Pup (30 December 2000)
- Carbon rich, Helium and no Hydrogen
- Near-infrared observations
- NAOS/CONICA VLT
- Polar outflows at 6720 km/s
- Faster moving knots at 8450 km/s

The Square Kilometre Array (SKA)

•

	SKA_LOW (Australia)	SKA_MID (South Africa)
Sensors	130k (500k) dipoles	197 (2000) dishes
Frequency range	50-350 MHz	0.45-15 GHz
Collecting area	0.4 km ²	0.3 km ²
Max baseline	65 (~5000) km	150 (~3000) km
Raw data output	157 Terabyte/sec 0.49 Zettabyte/yr	3.9 Terabyte/sec 122 Exabyte/yr
Science archive	0.4 Petabyte/day	3 Petabyte/day

- 3 sites; 2 telescopes + HQ, 1 Observatory
 - 2 phases:
 - Phase 1 Construction 2018-2024
 - Phase 2 Construction 2024-2033

1 Zettabyte = 10^3 Exabyte = 10^6 Petabyte = 10^9 Terabyte = 10^{12} Gigabyte

Credit: SKA Organisation

Credit: ICRAR/Curtin University

Credit: SKA Organisation

Novae in the SKA era

Novae in the SKA era

- 64 dishes over an 8-km baseline
- 13.5-m offset Gregorian
- Compact core, extended baseline
- Most sensitive cm-wavelength instrument in the southern hemisphere
- First dish constructed in 2015, 64th dish October 2017
- Full science second quarter 2018

Credit: SKA South Africa

Credit: SKA South Africa

Credit: SKA South Africa

Credit: SKA South Africa

THE ASTROPHYSICAL JOURNAL, 856:180 (11pp), 2018 April 1 © 2018. The American Astronomical Society.

OPEN ACCESS

Revival of the Magnetar PSR J1622–4950: Observations with MeerKAT, Parkes, *XMM-Newton, Swift, Chandra*, and *NuSTAR*

F. Camilo¹, P. Scholz², M. Serylak^{1,3,4}, S. Buchner¹, M. Merryfield^{2,5}, V. M. Kaspi⁶, R. F. Archibald^{6,7}, M. Bailes^{8,9},

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20 © 2017. The American Astronomical Society. All rights reserved. OPEN ACCESS https://doi.org/10.3847/2041-8213/aa91c

Multi-messenger Observations of a Binary Neutron Star Merger*

LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc

....

- We need to understand the origin of gamma-ray emission in nova systems
- Much work is still required to determine accurately the ejecta mass history
- We need also to understand the accretion history of nova systems
- We need to detect more V445 Pup like objects
- Improved radio instruments have opened a new window for our understanding of the nova phenomenon
 - The SKA can discover all the novae in the Galaxy (in it's observable sky)
 - The SKA will find the first extra-galactic nova
 - We will be able to do different population studies
- We are still on the hunt for what appears to be the elusive progenitor of Type Ia Supernovae
 - ThunderKAT@MeerKAT: systematic search of nearby (D < 20 Mpc) type Ia supernovae
 - Detection will validate the Single Degenerate model
 - Systematic non-detections will be constraining such that all Single Degenerate models are ruled out

Astrophysical transients: Portuguese Synergies

- Grande Telescópio Óptico (FCUP/ENGAGE SKA)
 - 75 cm diameter, FoV ~ 3 square degrees
 - In Pampilhosa da Serra
 - Primary driver: SST pilot, Space debris, near Earth Objects
 - Transient astrophysics with particular focus on extragalactic novae (ENGAGE SKA - FCUP+IT)
- Gravitation waves kilonova

Astrophysical transients: the radio sample

Credit: SKA South Africa

Transient

Core-collapse Supernovae

Ia Supernovae

Novae

Kilonovae

Currently

~50 (over 30 yrs) Improved understanding of supernova proprieties

0 Only upper limits on the circumstellar gas

1-2 per yr Can determine individual fundamental quantities

1 GW counterpart Start testing our theories

SKA1

100s per yr Uncover larger supernova population

1 per 13 yrs??? Deeper radio limits to circumstellar gas

~35 per yr This will unveil statistically complete populations

10s – 100s per yr??? Deeper searches and population studies

SKA2

1000s per yr Star-formation rate of massive stars

2 per yr??? Radio and X-ray can discriminate models

Similar studies will be possible to the Magellanic Clouds

100s – 1000s per yr??? Completer population studies