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SPACE WEATHER

It refers to conditions on the sun, in the solar wind, and within Earth's

i

e ““magnetosphere, ionosphere and thermosphere that can influence the

nance and reliability of space-borne and ground-based technological
ystems and can endanger human life or health.

"~

The solar wind
represents the - . .- The ionosphere is
flow of plasma s the @& layer of the

from the Sun to' ' UgNaimosphe s
where the gas is

the Earth e ionized

It has been a way to rename what was trad.itional.ly known as Solar-
Terrestrial Physics. . -

Credit: SOHO image composite by Steele Hill (NASA)
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The effects of magnetic storms - what scientists call space weather - extend from the
ground to geostationary orbit and beyond.

_ _ — Power transmission grids
Geomagnetically induced

currents (GICs) at the — Oil and gas pipelines
surface of the Earth in: — Telecommunication cables

— Railway equipment



Outline of the talk

Description of the phenomenon. Latitudinal extent

Determination of the electric field occurring in

connection with a magnetic storm at the Earth’s surface
Calculation of the resulting GIC

Case Study: Modelling and measuring GIC in the

Spanish power transmission network



/Under disturbed conditions of the Sun, the degree of \
lonization in the magnetosphere and the ionosphere

increases and there is a significant increase in their electrical
current systems, which are the source of the magnetic fields

at the Earth’s surface (superposed on the main geomagnetic
field, whose origin is in the Earth’s liquid core).

\The auroral electrojects can reach values of MA. /

Electrojets
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As a consequence of Faraday's law, associated with the

iInduced on the Earth’s surface. This electric field acts as a

~

variations in time of the geomagnetic field, an electric field is

/

S voltage source through the networks.
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Figure: John Kappenman (Metatech)



Transformer failures in regions incorrectly
considered to have low GIC-risk

Failure in a 700 MVA generator transformer in South Africa after the Halloween storms of 2003.
[Thomson et al., Adv. Space Res., 2010]
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Left: H component of the HER (South Africa) magnetic field (top) and time derivative
(bottom) during the Halloween storm. Right: the same event as recorded at EBR (Spain)



Sunspot Cycle and Maximum aa* in each Magnetic Storm
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Large storms identified by the peak in the 24-h running average of the aa index,
overlain with monthly smoothed SSN. The largest storms recorded at EBR and those
during the last three solar cycles that provide large rates of change are indicated.
[Adapted from Thomson et al., Adv. Space Res., 2010].
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/ E fields associated with the auroral \
electrojet are complicated by the effect of
currents induced in the Earth. In turn,
induced currents in the transformer

neutrals depend on the network topology

\ and characteristics. /
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A problem to be solved in two steps:

1) Determination of the geoelectric
field from the rate of change of the
magnetic field (Faraday’s Law):

OB
fE-cu:—f—-dA
ot

(vxE= -5
dt

It

This a purely geophysical problem,
which is independent of the
technological system

2) Determination of the GICs due to the given
geoelectric field in a conductor system whose

topology and resistances are known. This an
engineering problem

Figure: Antti Pulkkinen



A problem to be solved in two steps:
1) Geophysical step

-« Assuming a plane wave

It

- The electric and magnetic fields are
horizontal and spatially constant at the
Earth’s surface.

- |If the Earth is uniform:

1 dB, (1)

1 {
F=s |
x,y() X% —oox/f—if' dt'

dt'

-The electric field is affected by past values of the
magnetic field variation

-The integral can be obtained numerically:

2
E(t,) = (Rn—l — R, — \/abn—m)
JTTUgoA
where: b, =B, —B,_; R, = 2 bvn—i+1

i=n—-m+1

A= sampling interval m = integration time Figure: Antti Pulkkinen



E [V/Km]

E [V/Km]

EBR October 29-31, 2003

East (E,) and North (E,) components of the geoelectric field (o = 10-3 S/m)
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A problem to be solved in two steps:

2) Engineering step

Incidem Field

Determine GIC due to the given \\,B\
geoelectric field in a conductor system T
whose topology and resistances are

known.

Basic configurations of conductor networks:

« Continuous contact with the ground
(buried pipeline): Distributed source
transmission line theory.

GlCinpipll at Méntsala o

“M12:00 / 13 00 20:00

» Discretely grounded system (power transmission grid) —



Power grid modelling:
- Circuit in DC-current by applying Ohm’s and Kirchhoff's laws

- Grid divided in a series of grounded nodes — Matrix formulation

/‘\I Lehtinen & Pirjola, 1985
¥

Rim

GIC flowing intothe | _ % Ny, ;jcor [= 1+ YZ) ' J
Earth at each node : z 1Y — ( )

|__
m i3 Lo a3
where: Vl-j-’=]L E°-dl, yer =) 7, , i=il’ R, i=ji N7, 4 Ry
| )
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Data used to compute the admittance (Y) and the
earthing impedance (Z) matrices for GIC calculation:

- Geographical positions of each substation and links

- Line resistances
Resistance per unit length, length, no. of conductors/phase

and no. of lines
- Resistances of each substation

Sum of the transformer resistances with all phases in
parallel and any reactor resistance.

(@)

—W—
|
Elﬂl R :
e
Rf
R,
e
R +R£ K R
R,= R+ R+ — Jlia‘}|,=.'?,+}2,+T'+TI

Possible transformer configurations



GIC Modelling

Electric grid model
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Combining the Geophysical and Engineering Steps:

1) CALCULATION OF GIC’s IN EACH
NODE

When the electric field associated with the
geomagnetic variations is considered spatially
constant in the region of analysis, once it is known
and the matrix elements of network impedances

resolved, the calculation of GIC's is straightforward:

IGIC (0= aEx(v + bEy(o

where a and b are constant parameters [AKkm /V ]
for each node, which depend on the geometry and
the resistances of the network. They are obtained
by applying fields of 1 V/km in the N and E
directions, respectively.

Station a b
ASCO 2.87 | -81.14
BEGUES -9.07 | 59.57
CALDERS 12.46 | 26.22
CAN BARBA -16.62 | 51.81
CAN JARDI 12.80 | 44.85
GARRAF -11.29 | 26.02
MEQUINENZA 6.86 | -26.76
PIEROLA -45.60 | -22.79
PLANADEL VENT | -31.78 | 4.54
RUBI 19.33 | 64.96
SALLENTE 83.90 | -63.63
SENTMENAT 9.52 | 102.88
VANDELLOS 2557 | 7.14
VIC 845 | 222

Constants for end of October, 2011




2) CALCULATION OF GIC’s IN EACH TRANSFORMER

The total GIC flowing in the node is shared
among their neutrals. The constants a; and
b, are derived from the constants a and b
using the corresponding current divider:

Igic()=arE(1) + brE\(Y)

GICs depend on the length and geometry of
the lines that converge at that node with
respect to the direction of the incident field
and, in turn, on the number and resistance
of transformers.

Results published at:

Torta et al. (2012): Geomagnetically
induced currents in a power grid of
northeastern Spain, Space Weather, 10,
S06002, doi:10.1029/2012SW000793

Number of

Station Transformer a b ar br
trafos

TG1 1.22 |-34.51
ASCO 3 TG2 2.87 |-81.14 1.22 |-34.51
TR3 0.43 (-12.12
ATR3 -4.53 | 29.78

BEGUES 2 -9.07 | 59.57
ATR4 -4.53 | 29.78
CALDERS 1 TR1 1246 | 26.22 | 12.46 | 26.22
TR6 -8.31 | 25.91

CAN BARBA 2 -16.62 | 51.81
TR7 -8.31 | 25.91
CAN JARDI 1 ATR4 12.80 | 44.85 | 12.80 | 44.85
GARRAF 1 TR1 -11.29 | 26.02 [-11.29 | 26.02
MEQUINENZA 1 ATR2 6.86 |-26.76 6.86 |-26.76
TR1 -22.61 |-11.30

PIEROLA 2 -45.60 (-22.79
ATR4 -22.99 |-11.49
TG1 -15.89 2.27

PLANA DEL VENT 2 -31.78 4.54
TG2 -15.89 2.27
B ATR7 10.20 | 34.29

RUBI 2 19.33 | 64.96
ATR8 9.13 | 30.67
TG1 21.54 |-16.34
TG2 21.20 |-16.08

SALLENTE 4 83.90 |-63.63
TG3 20.63 |-15.65
TG4 20.52 |-15.57
ATR2 3.12 | 33.72
SENTMENAT 3 ATR3 9.52 (102.88 3.34 | 36.07
ATR4 3.06 | 33.09
TR1 -5.76 1.61
VANDELLOS 3 TR2 -25.57 714 -6.92 1.93
TG1 -12.89 3.60
ATR1 -1.01 0.27
ATR2 -1.25 0.33

VIC 4 -8.45 2.22
ATR3 -1.25 0.33
ATR4 -4.95 1.30
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PREDICTION OF GIC’S IN
THE NETWORK NODES/
TRANSFORMERS

100 4 143

Igic [A]

29-31 October 2003 (Halloween storm)
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401~ .
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ks

10 20 30 40 50 60 70
Time [h]

24-26 March 1991 (the most abrut SSC)

According to the current network configuration and all elements in operation
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Next step: extreme value statistics

SPACE WEATHER, VOL. 9, S10001, doi:10.1029/2011SW000696, 2011

Quantifying extreme behavior
in geomagnetic activity

Alan W. P. Thomson,' Ewan B. Dawson,' and Sarah J. Reay1

SPACE WEATHER, VOL. 10, S02012, doi:10.1029/2011SW000734, 2012

On the probability of occurrence of extreme space
weather events

Pete Riley'

Received 16 September 2011; revised 18 November 2011; accepted 22 December 2011; published 23 February 2012.

[1] By virtue of their rarity, extreme space weather events, such as the Carrington event of 1859, are
difficult to study, their rates of occurrence are difficult to estimate, and prediction of a specific future
event is virtually impossible. Additionally, events may be extreme relative to one parameter but normal
relative to others. In this studv. we analvze several measures of the severitv of space weather events
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Torta et al. Earth, Planets and Space 2014, 66:87 O Ea rth Pla nets and Space

http://www.earth-planets-space.com/content/66/1/87
P/ P P / kel a SpringerOpen Journal

FULL PAPER Open Access

Assessing the hazard from geomagnetically
induced currents to the entire high-voltage
power network in Spain

Joan Miquel Torta'"’, Santiago Marsal' and Marta Quintana®

Abstract

After the good results obtained from an assessment of geomagnetically induced currents (GICs) in a relatively small
subset of the Spanish power transmission network, we now present the first attempt to assess vulnerability across
the entire Spanish system. At this stage, we have only included the power grid at the voltage level of 400 kV, which
contains 173 substations along with their corresponding single or multiple transformers and almost 300
transmission lines; this type of analysis could be extended to include the 220-kV grid, and even the 110-kV lines, if
more detailed information becomes available. The geoelectric field that drives the GICs can be derived with the
assumption of plane wave geomagnetic variations and a homogeneous or layered conductivity structure. To assess
the maximum expected GICs in each transformer as a consequence of extreme geomagnetic storms, a post-event
analysis of data from the Ebre Geomagnetic Observatory (EBR) during the 2003 Halloween storm was performed,
although other episodes coincident with very abrupt storm onsets, which have proven to be more hazardous at
these mid-latitudes, were analyzed as well. Preferred geomagnetic/geoelectric field directions in which the
maximum GICs occur are automatically given from the grid model. In addition, EBR digital geomagnetic data were
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GIC Monitoring

Main transformer

400 kV windi i
windings - System based in a Hall effect transducer.

* i * - The 50-Hz signal and its harmonics are also
monitored to evaluate the degree of saturation
of the 400 kV transformers.

Hall effect
| transductor Detector
Neutral
— Ground
Transformer
- Current and temperature data are Y Y
. agn MT

digitized and saved by means of a real- AT | | oms GIC +
. . e i Modem 50-Hz current + Neutral Conductor
time acquisition system. The data is ) 7 harmonics v i
transferred using an UMTS connection or Real-Tme |, ' Hall-effect

: Acquisit |
a satellite modem. Systom fransducer
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Model validation with real measurements
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Non uniform Earth: 1-D layered structure

Z(w)By ()
Ho

Z(w) Surface impedance

Ex,y (w) =+

higher

conductivity

stronger attenuation

longer periods in regions of high
penetrate deeper conductivity

htto://www.space.dtu.dk
Z(w)

Skin depth p(w) = -
LWl

Lw
Zy = Ho coth (yNdN + coth_l( Yn ZN+1))

145 Lwi
YN =/ lwloy



Model validation with real measurements
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Model validation with real measurements
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Vulnerability assessments of the risk posed
by geomagnetically induced currents to

The accurate knowledge of the geomagnetic field variations at each node
of the grid

The Earth’s geoelectrical structures beneath the network

The topology and relative resistances of the grid elements in the precise
instant of a geomagnetic storm.




Geomagnetic variations interpolated from the records
of several observatories with the SECS technique

- Spherical Elementary Current > 300 Afkm
Systems (SECS) is an equivalent
source method that models the
observed ground magnetic variations
in terms of their current sources,
which are assumed to flow on a
current sheet at the ionosphere.

-The current source is constructed
from the superposition of divergence-
free elementary currents flowing
concentrically around the knots of a
pre-defined grid.

- Amplitudes of the elementary current
systems are determined by inversion
of the magnetic data. The system to
be solved is (T: transfer matrix):

Instant of maximum disturbance during
B=T:-I the 2015 Saint Patrick’s Day storm



At mid-latitudes the source field is rather uniform and the
effect of its spatial changes is not important

Any interpolation method is valid, even that of using the
nearest geomagnetic observatory

50 I I I I I I I

Nearest neighbour (COI)

V expanded in pol. (deg 1)

V expanded in pol. (deg 2)

50+ SECS

-100

delta X (nT)

-150 -

-200

_250 | 1 | | | | |

UT (h)



Knowledge of the geoelectrical structure — magnetotellurics
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Abstract

Vulnerability assessments of the risk posed by geomagnetically induced currents (GICs) to power
transmission grids benefit from accurate knowledge of the geomagnetic field variations at each
node of the grid, the Earth's geoelectrical structures beneath them, and the topology and relative
resistances of the grid elements in the precise instant of a storm. The results of previous analyses
on the threat posed by GICs to the Spanish 400 kV grid are improved in this study by resorting to
different strategies to progress in the three aspects identified above. Firstly, although at



Modelling approach:

1) Obtaining the geoelectric field by:

Surface from
impedance observatory
L data
Z(w)By(w)
y,X
E X,y (w) =+
Ko

2) Obtaining the induced voltages on the
power grid by:

Vy=], E-di

Length of the

grid line between
groundings

400 kV network
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Initial Modelling:
* Plane wave assumption for the external source
* Homogeneous Earth conductivity for the induction problem

* Lehtinen-Pirjola method (Ohm and Kirchhoff laws in matrix form)



IBERGIC PROJECT

Characterization of the GIC external sources

Data/tools:
INTERMAGNET
Magnetometer
chains

Phenomena:

e SC

Characterization of the GIC internal sources

MT soundings:
* Existing
* New
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IBERGIC PROJECT

Characterization of the GIC external sources

Data/tools:
INTERMAGNET
Magnetometer

Phenomena:
SC
Substorms

chains
SECS
Splines
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IBERGIC PROJECT

500 T T T T T T

- Characterization of the GIC internal sources
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1. Cantabrian Mountains Knowledge of the geoelectrical structure — magnetotellurics
2. Pyrenees and Ebro Basin e 1 7 A R 3
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4. NE Portugal 2 ;

5. Hontomin and Duero Basin

6. El Hito Anticline

7. Tajo Basin - Betics profile (Picasso)

8. Iberian Chain and El Maestrat

9. Montmell

10. Vallés

11. Majorca

12. Jumilla and Bicorp diapirs

13. Ossa Morena and Centro Iberia
14 .Alhama de Murcia and Carboneras Fg
15. Betic Chain

16. Alboran Basin
17. Alhucemas Fault
18. Atlas Mountains
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1 INITIAL MODEL:

E\Electrlcal Resistivity Model of the Iberian thhosphere: ERMIL 0.0

Precambrian  Paleozoic Cenozoic

s | | |

Best fit:
7(HCL) = exp(-0.023 * Qo) * 418

Under certain assumptions (not
true in regions with a transient
thermal regime or with
anomalous crustal radioactivity),
surface heat flow can be used as a Surface heat flow (mW/m?)
rough proxy for the thickness of

A Compilation of Adam (1976)
B Data published after 1976

Depth to the HCL (electric asthenosphere) (km)
—
N
=]
I

300 T | T ] T | T | T
0 25 50 75 100 125

the lithosphere. Empirical relationship between heat flow and thickness
of the electrical lithosphere (Artemieva, 2006)



1 INITIAL MODEL:

E\Electrlcal Resistivity Model of the Iberian thhospherei ERMIL 0.0

V/ -
le o

Heat Flow (mW/m’)

Heat flow data derived from
the Curie point depth
(Andrés et al., 2018).

Best fit:
7| | 2(HCL) = exp(-0.023 * Qo) * 418
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250 —
A Compilation of Adam (1976) B
- W Data published after 1976 |

Electrical lithosphere thickness
derived from heat flow data and
the equation of Artemieva
(2006).
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Electrical lithosphere thickness
map
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| INITIAL MODEL:

ERMIL 0.0
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The LAB should be considered as a
first order approx., given that the
heat flow map is an approx. to the
real values and also that the
conversion formula was obtained
considering tectonic scenarios that
span over several tectonic periods.
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After a 3D inversion of 10 frequencies in the period
-800 range 10-30000 s for each of 58 selected MT sites
using the ModEM code (Egbert and Kelbert, 2012),
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EM fields (2015-03-17, 17:20 -18:49 UT)
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Torta et al. Earth, Planets and Space 2014, 66:87 0 Ea rth Planets and Space
’

http:// .earth-planets- .com/content/66/1/87
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Vulnerability map

\
|
|
(Torta et al., 2014) E Assessing the hazard from geomagnetically
\ S induced currents to the entire high-voltage

power network in Spain

FULL PAPER Open Access
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Figure 4 Maximum values of GICs under the conditions during the Halloween storm. Circles have diameters proportional to the flowing
current (regardless of its sign), and a maximum of 78.2 A was observed, which was achieved at the Mesa de la Copa substation (node 157 in
Figure 1). Arrowheads at the ends of some transmission lines indicate connection with foreign substations.
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Figure 4 Maximum values of GICs under the conditions during the Halloween storm. Circles have diameters proportional to the flowing
current (regardless of its sign), and a maximum of 78.2 A was observed, which was achieved at the Mesa de la Copa substation (node 157 in
Figure 1). Arrowheads at the ends of some transmission lines indicate connection with foreign substations.
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GIC effects on the power transmission network

GIC measurements:

e Transformer > beEs
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A second magnetometer was installed 300 m away from the power line

GIC magnetic signal (Ipmlse =0.33 A, height = 20.5 m, wire separation =11 m)
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r - distance from the central wire of the power line (m)
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How do we quantify the performance of our models?

A”. l ::;‘;:g:g Access by Observatori de I?Ebre Search - - -
AGU 100, ' "~ Pgives us an idea of the fraction

of the standard deviation of the
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Abstract

We describe a metric that has been repeatedly applied to assess the performance of
models aimed at predicting geomagnetically induced currents from Space Weather

events. The used parameterization, based on the well-known root-mean-square error MOdeIed Observa tions With the
between model and observations, is simple and intuitive. Its use is exemplified, and its . T

advantages and disadvantages are discussed, as well as its relationship with the widely same S’Qnal m UIt'pI'ed by G Scale
extended correlatioh coefficient, r. Although the use of r alone is inappropriate f<?r fa Ctor or shifted by a constant
purposes of evaluating the agreement between model and observations, its use is ) .

recommended to complement the described performance parameter. va Iue Wl” prO Vlde the samer

1 Introduction

Modeling is one of the essential activities in different branches of science and engineering
with the purpose of describing either the totalitv or a particular aspect of an observable



Inclusion of lower voltage circuits

Taking into account the 220 kV and 110 KV power systems
is essential at those substations of the 400 kV grid where
the systems are interconnected through autotransformers.
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CONCLUSIONS (1)

Space weather is an emerging natural hazard,

with incredibly important effects to our lives marked by
the technological dependence (HI-LF).

GIC appear in technological systems such as power
transmission grids.

Modelling efforts require a determination of the electric
field occurring in connection with a magnetic storm at
the Earth’s surface,

and a calculation of the resulting GIC in the conductor
system after obtaining a DC model (it is of utmost
importance to know the geometrical configuration, the
couplings, the connections and the resistance values)



CONCLUSIONS (li)

The forensic analysis revealed that the greatest rate of
change of the geomagnetic field at Ebro Observatory
reached 177 nT / min.

This empirical limit is much lower than the intensities
that have caused impacts on electricity networks In
higher latitude regions ("Quebec” was of 479 nT / min),
although impacts have been observed with levels < 100
nT / min.

To improve the GIC modelling, MT measurements can
be expressed as empirical impedance tensors.

Results for both the obtaining of new models and data
for their validation are still preliminary ... but very
promising



Thanks for your attention!
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Model validation with real measurements

GIC -VANDELLOS-TRP1

0 5 10 15 20 25 30 35 40 45
Time [h]

Measured (red) and calculated GIC for 24-25/10/2011

Using a 2D layered structure, with the strike direction & assumed
parallel to the coast and the Z;- and Z;,, obtained from the MT survey:
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Northward and Eastward network constants at the transformer



Saturation of Power Transformers

P
Flux A

Figure 4.1 Transformer magnetisation curve in the presence of GIC [1].

A transformer core is made of high permeability ferromagnetic material such as
silicon steel. Its purpose is to provide a well-defined low reluctance path for magnetic
flux.The DC offset caused by the GIC causes an alignment of the core material
domains in one direction and thus along the hysteresis curve causing a null point
offset. To prevent transformers from becoming prohibitively expensive, their cores are
designed to operate close to the saturation point of the hysteresis curve.



Saturation of Power Transformers

Magnetisation curve of
core material

RS

Flux Density
\\
<//

GIC Offset l.-" j
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Figure 4.2 Relationship of w
Exciting Current without GIC

present (in black), and with GIC
that saturates the transformer

(in red) [2].

Magnetisation Current

The GIC offset can therefore cause transformers to saturate every half-cycle,
hence the term half-cycle saturation, the root-cause of all power system problems that
occur during geomagnetic storms. Note that magnetisation current is very small to
improve transformer efficiency, therefore equally low values of GICs can cause a

considerable offset.



Transformer — Normal Operation Transformer Heati ng

High Voltage Low Voltage
- The saturation of the magnetic
Steel Tank —» core will cause flux to exit the core
steel for alternative paths, such as
Iron Core the tank wall, flux shields, clamps

and other structural steel members
of the transformer (see figure). The
Ground leakage flux due to core saturation
initiates eddy current heating in
components linked by it and creates
hot spots. Hot spots can melt

High Vottage structural steel members and are
likely to cause a cumulative
damaging effect on the transformer
winding insulation,leading to
premature transformer failure.

Transformer — Abnormal
Operation Due to GIC

Steed Tank —»

lron Core

Stray Flux due to Irg

Core Saturation ca

caus o ovorhosting

damage to transfonfie

winding, core, and tank GIC Flow
structures,




SIMPLEST RAIL CIRCUIT
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Incidents in oil and gas steel pipelines

Voltage generator

\
\

Anode field .
Pipeline

Current

Figure: Antti
Pulkkinen

300-700 m

- They use a cathodic protection to minimize corrosion by maintaining
the steel at a negative potential with respect to ground

- GICs can cause changes in the pipeline to the ground potential,
increasing the risk of corrosion in large geomagnetic storms

- They can contribute to reduce the lifetime of the pipeline




