

Pedro Martins

Abstract:

Biomechanics or the 'mechanics of living things' is commonly perceived as the study of the mechanics of biological entities, specially of muscles and their movement. These notions are fairly common - even among the "scientifically educated". However, the word Biomechanics has largely transcended its etimology.

This talk will present an overview of some experimental and computational works developed on the **biomechanics LAB at INEGI (mainly experimental)** and **by the research group (mostly computational)**

The broad scope and diversity of the team's work is spread across a multitude of disciplines:

- applied mathematics (optimization, finite element simulations)
- physics (nonlinear elasticity)
- biology (everything bio)
- biomaterials (material science)
- image analysis (for everything ...)
- Robotics (with biomimetic, surgical, assistive or other purposes)

BIOMECHANICAL STUDIES

- Scale
- Detail
- Biomechanics = Movement?

Development of an exoskeleton

(D Pina et al., Advances Mechanical Engg, 2018)

25 de setembro de 2019

Pedro Martins – palsm@fe.up.pt

> U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

What do we need to do a biomechanical study?

motivation

Biomechanics of female pelvic cavity:

<image><image>

During exercise, the increase in intra-abdominal pressure (IAP) may result in stress urinary incontinence (SUI) if the pressure inside the abdomino-pelvic cavity is higher than the urethral closure pressure.

(B.T. Haylen et al., Neurourol Urodyn, 2010)

25 de setembro de 2019

Pedro Martins – palsm@fe.up.pt

PORTO

Consequences of a pelvic floor dysfunction

MOTIVATION

- –Urinary or fecal incontinence
- -Pelvic organ prolapse (POP)
- -Rectal pain
- -Constipation
- -Pelvic pain/trauma
- -Sexual dysfunctions

8

Female pelvic cavity: gross anatomy

Pedro Martins - palsm@fe.up.pt

Hyperelastic constitutive model for PF muscles

(JAC Martins et al., Comp Method Applied Mech Engg, 1998)

25 de setembro de 2019

Hyperelastic constitutive model for PF muscles

The strain energy stored in the isotropic matrix, embedding the muscle fibers:

$$U_I = c \left[e^{b \left(\overline{I}_1^C - 3 \right)} - 1 \right]$$

 $\overline{I_1}^C$ 1st I. of the right Cauchy-Green strain tensor with the vol. change eliminated

$$\overline{I}_1^C = \operatorname{tr} \overline{\overline{\mathbf{C}}} = \operatorname{tr} \left(\overline{\overline{\mathbf{F}}}^T \overline{\overline{\mathbf{F}}} \right) = J^{-2/3} \operatorname{tr} \overline{\mathbf{C}}$$

 $\overline{\mathbf{F}}$ Deformation gradient with the volume change eliminated $\overline{\mathbf{F}} = J^{-1/3}\mathbf{F}$

The strain energy associated with the volume change:

$$U_J = \frac{1}{D} \left(J - 1 \right)^2$$

(JAC Martins et al., Comp Method Applied Mech Engg, 1998)

25 de setembro de 2019

Pedro Martins – palsm@fe.up.pt

CINECI driving science & innovation Biomechanics: experimental and computational applications

Hyperelastic constitutive model for PF muscles

The strain energy stored in each muscle fiber, can be divided into a $U_f(\overline{\lambda}_f, \alpha) = U_{pas}(\overline{\lambda}_f) + U_{act}(\overline{\lambda}_f, \alpha)$ passive elastic part and an active part due to the contraction:

The passive elastic part is given by: $U_{pas} = A \left\{ \exp \left[a \left(\overline{\lambda}_f - 3 \right)^2 \right] - 1 \right\}$

Fiber stretch ratio in the direction N of the undeformed fiber:

$$\overline{\lambda}_f = \sqrt{\mathbf{N}^T - \mathbf{C} \mathbf{N}}$$

The active part is given by:

(JAC Martins et al., Comp Method Applied Mech Engg, 1998)

25 de setembro de 2019

Pedro Martins – palsm@fe.up.pt

enec driving science & innovation

Biomechanics: experimental and computational applications

Visco-hyperelastic constitutive model for PF muscles

Strain Energy Function:

(M Vila Pouca et al., Int J Numer Meth Biomed Engg, 2018)

(P Martins, 2006 \rightarrow selected as one of the best papers in honor of Strain's 50th Anniversary, 2016)

Mechanical characterization:

(P Martins et al., CompIMAGE, Coimbra, 2006)

25 de setembro de 2019

Pedro Martins – palsm@fe.up.pt

Human cadaveric tissue **cd** Human surgical explant **se**

Abdominal Fascia

Uterosacral ligament

Round Ligament

Bladder cuff

Vagina (anterior + posterior)

levator ani muscle

Unpublished insufficient sample

PORTO

Uniaxial tension test: different tissues from pelvic cavity

(P Martins et al., VIII Congresso Nacional da APNUG, 2013 \rightarrow Communication Best Paper Award)

25 de setembro de 2019

Pedro Martins – palsm@fe.up.pt

PORTO

FACULDADE DE ENGENHARIA

Uniaxial tension test: POP and non-POP vaginal tissue

(P Martins et al., Gynecologic and Obstetric Investigation, 2013)

Risk factors associated with pelvic floor disorders

Childbirth

Pregnancy

25 de setembro de 2019

Pedro Martins - palsm@fe.up.pt

CINECII driving science & innovation

Biomechanics: experimental and computational applications

U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Simulation of vaginal delivery: Geometrical constraints

(M Parente et al., Int Urogynecology J, 2008)

U. PORTO

FACULDADE DE ENGENHARIA

Simulation of vaginal delivery: descent movements

(*M* Parente et al., SINUG, 2012 \rightarrow Communication Best Paper Award)

Simulation of vaginal delivery: deformation field of the PF

(*M* Parente, $2009 \rightarrow IBM$ Award – Honorable Mention)

(M Parente, 2012 \rightarrow SIMULIA Best Animation Award, academic sector)

> U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Simulation of vaginal delivery: effects of episiotomy

(D Oliveira, 2016 \rightarrow IBM Award – Honorable Mention)

25 de setembro de 2019

Pedro Martins – palsm@fe.up.pt

U. PORTO

FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Simulation of vaginal delivery: effects of episiotomy

 $\theta = 60^{\circ}$ $\mathbf{L} = 10 \ mm$

(D Oliveira et al., Comp M Biomech Biomed Eng, 2017)

Biomechanical study of the human ear

Incus

Biomechanical study of the human ear

Malleus

Stapes

(F Gentil et al, IMechE Part H: J Eng Medicine, 2011)

25 de setembro de 2019

Pedro Martins – palsm@fe.up.pt

Inner ear

Tectorial Membrane

U. PORTO

FACULDADE DE ENGENHARIA

Vestibular system

Cupula shape take an important role in the vestibular rehabilitation efficiency.

Vestibular system

Complex fluid / structure interaction: adequate FEM and smoothed-particle hydrodynamics are used.

25 de setembro de 2019

Pedro Martins - palsm@fe.up.pt

CINECIA driving science & innovation Biomechanics: experimental and computational applications

Masticatory system: mechanical props temporal muscles

(V Trindade et al., J Biomech, 2013)

Pedro Martins – palsm@fe.up.pt

Biomechanics:

experimental and computational applications

Estimation of cadaveric rigidity -**Necromechanics**

CINECIA driving science & innovation

(P Martins et al., Proc IMechE Part H: J Eng Medicine, 2015)

Virtual Reality (VR) applied to Biomechanics

Setup used

- 1 Oculus Rift
- 2 Leap Motion

Methods

Implemented Menu

25 de setembro de 2019

Pedro Martins - palsm@fe.up.pt

Some examples: implemented functions

Activation of the menu

Model rotation

Model translation

Pedro Martins – palsm@fe.up.pt

UROSPHINX – FCT Project – VR application

25 de setembro de 2019

Constructed Environment

Results - I

- Application with:
 - multiple models
 - different pathologies
 - Interactive manipulation
- 'on the fly' clinical case comparison
- Intuitive case storage and access.

Results - II

Pedro Martins - palsm@fe.up.pt

CINEGI driving science & innovation Biomechanics: experimental and computational applications

Acknowledgements

Funding from FCT, Portugal, under grant SFRH/BPD/111846/2015 and projects **UROSPHINX**/Project16842(COMPETE2020), and **MImBI** - PTDC/EME-APL/29875/2017 financed through FEDER and FCT, are gratefully acknowledged.

U. PORTO

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

