
Scaling invariance breaking in Four-boson systems and beyond

Tobias Frederico

Instituto Tecnológico de Aeronáutica
São José dos Campos, Brazil

tobias@ita.br

Univ. Coimbra, sept.4,  2019 



OUTLINE

1. Intro: Scale invariance and Breaking: example integral equation and 1/r2   potential

2. Three-bosons: Thomas and Efimov effects

3. Three-Bosons: SKM equations & Danilov’s UV solution

4. Limit cycles: scaling plots

5. Mass imbalanced systems

6. Dimensional reduction

7. Faddeev-Yakubovski  eqs (4-bosons), zero-range int., reg. and renor.: Scaling-plot

8. LLHH,  LLLHH … systems: B.O. approximation

9. FY scale invariance in UV  & scale-invariance breaking: 4-body scale

10. Scale inv. breaking in relativistic bound states with Bethe-Salpeter eq.

11. Summary



1. Scale invariance and Breaking: example integral equation

f(k) = �

Z 1

0
dp p

f(p)

k2 + p2
<latexit sha1_base64="vOrVPTrem+ayCE8w5KNKSp5070M="></latexit>

f(k) and f(⇠k) solutions
<latexit sha1_base64="5EM4HZySZCwgIe8aDwlVbpFSa5E=">AAACH3icbVDLSgMxFM3UV62vUZdugkWoIGWmirosunFZwT6gLSWTZtrQTGZI7kjL0D9x46+4caGIuOvfmGm7sK03BE7OuYebe7xIcA2OM7Eya+sbm1vZ7dzO7t7+gX14VNNhrCir0lCEquERzQSXrAocBGtEipHAE6zuDe5Tvf7MlOahfIJRxNoB6Unuc0rAUB372i8MzlsX5gAbQoKJ7OJx+sZ+oTXkeEHUoYhTmx537LxTdKaFV4E7B3k0r0rH/ml1QxoHTAIVROum60TQTogCTgUb51qxZhGhA9JjTQMlCZhuJ9P9xvjMMF3sh8pcCXjK/nUkJNB6FHimMyDQ18taSv6nNWPwb9sJl1EMTNLZID8WGEKchoW7XDEKYmQAoYqbv2LaJ4pQMJHmTAju8sqroFYqupfF0uNVvnw3jyOLTtApKiAX3aAyekAVVEUUvaA39IE+rVfr3fqyvmetGWvuOUYLZU1+AXKQoXE=</latexit>

int. eq. invariant under: k ! ⇠k and p ! ⇠p
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f(k) = k⌘
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transcendental eq.: � = � 2

⇡
sin

⇣⇡⌘
2

⌘

<latexit sha1_base64="vdQmgGMSVD5Z8zl5XE7Hkk/gRGA="></latexit>
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IF � > �c =
2

⇡
then ⌘ = �1 + ıs0

<latexit sha1_base64="TW9/sH0aeTTIzy/+7/rzBfx+0z8="></latexit>

Solution: f(k) = k�1 sin(s0 log k/k
⇤)

<latexit sha1_base64="hrX9PN0+R96w64Oe3E/hbdiWYsk="></latexit>

Continuous symmetry breaking to a discrete one & k*dimensional scale

k ! exp(n⇡/s0) k
<latexit sha1_base64="/kevM3Z+STQo2TEddED4nfX90OQ=">AAACAHicbVC7TsMwFHV4lvIKMDCwWK2QikAlKQOMFSyMRaIPqYkix3VaK44T2Q4iirrwDfwBCwMIsfIZbP0b3McALUeydHTOvbo+x08YlcqyRsbS8srq2npho7i5tb2za+7tt2ScCkyaOGax6PhIEkY5aSqqGOkkgqDIZ6Tthzdjv/1AhKQxv1dZQtwI9TkNKEZKS555GDoqhg55TCrcSei59KwT6JyFnlm2qtYEcJHYM1Kul5zT51E9a3jmt9OLcRoRrjBDUnZtK1FujoSimJFh0UklSRAOUZ90NeUoItLNJwGG8FgrPRjEQj+u4ET9vZGjSMos8vVkhNRAzntj8T+vm6rgys0pT1JFOJ4eClIGdeZxG7BHBcGKZZogLKj+K8QDJBBWurOiLsGej7xIWrWqfVGt3ek2rsEUBXAESqACbHAJ6uAWNEATYDAEL+ANvBtPxqvxYXxOR5eM2c4B+APj6wftM5hL</latexit>

Applies to 3bosons, 4bosons @unitarity, relativistic bound states (Bethe-Salpeter eq.)



Scale invariance and Breaking: example  1/r2   potential

� d2

dr2
 (r)� K

r2
 (r) = E (r)

<latexit sha1_base64="/h3F4sjfIG+1CQ+cPsyqXPzTTxk=">AAACIHicbZBNS8MwGMfT+TbnW9Wjl+AQ5sHRTmFehKEIgpcJ7gXWOdI03cLStCSpMEo/ihe/ihcPiuhNP43Z1sPcfCDhx///PCTP340Ylcqyvo3c0vLK6lp+vbCxubW9Y+7uNWUYC0waOGShaLtIEkY5aSiqGGlHgqDAZaTlDq/GfuuRCElDfq9GEekGqM+pTzFSWuqZ1RPHFwgn3kMlTTyhbyeStCSOM/02TWbEi2uYUc8sWmVrUnAR7AyKIKt6z/xyvBDHAeEKMyRlx7Yi1U2QUBQzkhacWJII4SHqk45GjgIiu8lkwRQeacWDfij04QpO1NmJBAVSjgJXdwZIDeS8Nxb/8zqx8s+7CeVRrAjH04f8mEEVwnFa0KOCYMVGGhAWVP8V4gHSwSidaUGHYM+vvAjNStk+LVfuzoq1yyyOPDgAh6AEbFAFNXAD6qABMHgCL+ANvBvPxqvxYXxOW3NGNrMP/pTx8wuFKaKJ</latexit>

 (r)|rpE⌧1 ! r
1
2 sin(

p
4K � 1 log(r/r⇤))

<latexit sha1_base64="kdHNF5CgX+0SmbWYIjZslhbo6cI="></latexit>

K >
1

4
discrete scale symmetry

(”fall to the center” Landau Quantum Mechanics)
<latexit sha1_base64="D4J+P89n2PZ8D+I+AU5aZkpKmHo="></latexit>

Continuous symmetry breaking to a discrete one & r*dimensional scale

Efimov  effect & Thomas collapse



skku

Scalings in Few-Body Systems Model results - The tetramer spectrum Formalism Numerical solutions Summary

Weakly-bound FB systems and Efimov effect

The Efimov effect

Efimov Physics (1970): Nuclear Physics

Vitaly Efimov

2. Three-boson system: Subtle three-body phenomenum in Ltotal=0:

Phys. Lett. B 33, 563 (1970).



2. Three-bosons: Thomas and Efimov effects

8

One three-body scale is necessary to represent short-range physics !!!! 

Thomas collapse (1935) Efimov effect (1970)

roà 0 |a|  à

Route to collapse! infinitely many bound states
condensing at E=0

8

|a|/roà

Adhikari, Delfino,TF,Goldman,Tomio, PRA37 (1988) 3666

Jensen, Riisager, Fedorov, Garrido, RMP76, 215 (2004)
Braaten, Hammer Phys. Rep.428, 259 (2006)

L. H. Thomas, Phys. Rev. 47, 903 (1935) V. Efimov, Phys. Lett. B 33, 563 (1970).



Qualitative view Thomas-Efimov effect

Ø State of maximum symmetry in s-wave

Ø Effective interaction                      hyper-radius

Ø When                            no dimensional scale!!!!  

Ø if  K > ¼

Ø Efimov factor

Ø Three-boson energies Discrete symmetry!

V (⇢) ⇢ =
⇣X

r2ij

⌘ 1
2

a�1 ! 0

V (⇢) = �K

⇢2

� d2

d⇢2
 (⇢)� V (⇢) (⇢) = 0

s0 = 1.00624

 (⇢) ⇠ sin (s0 log ⇢/⇢⇤)

En+1 = Ene
�2⇡/s0

M. T. YAMASHITA et al. PHYSICAL REVIEW A 87, 062702 (2013)

where tan θ4 =
√
A(A + 2) for 0 ! θ4 ! π

2 . Notice that α5
and α6 are simple poles while α1, α2, α3, and α4 are poles of
second order [see Eq. (A22)].

To evaluate the contour integral, we choose the closed
path as in the calculation of n3(qB), namely, a rectangle of
vertices −R, +R, +R + iπ , and −R + iπ (for R → ∞),
which encompasses the poles α1, α2, and α5 in the upper-half
plane. Once more, we are left with four integrals, i.e., J1 which
extends along the real axis from −R to +R, J2 from +R
to +R + iπ , J3 from +R + iπ to −R + iπ , and J4 from
−R + iπ to −R. In the limit R → ∞ we find that J1 = I1,
J3 = e−sπI1, and J3 and J4 → 0. In this way, we find that

I1 = 2π i

1 + e−πs
[Res(f,α1) + Res(f,α2) + Res(f,α5)]. (A24)

Calculating the residues is tedious, except for the case of
α5 where Res(f,α5) = 0. After some algebraic work, the real
and imaginary parts of I1 are given by

Re I1 = π (A + 1)3A
4
√
A(A + 2) cosh

(
sπ
2

) cosh
[
s

(
π

2
− θ4

)]
, (A25)

Im I1 = π (A + 1)4

4
√
A(A + 2) cosh

(
sπ
2

)

×
{√

A(A + 2) sinh
[
s
(π

2
− θ4

)]

− s A
A + 1

cosh
[
s
(π

2
− θ4

)] }
. (A26)

Combining Eqs. (A20), (A22), and (A26), the nonoscillat-
ing part of n4(qB) finally reads as

⟨n4(qB)⟩ = 8π2|cAB |2A2

s q5
B cosh

(
sπ
2

)
{

sinh
[
s
(π

2
− θ4

)]

− s A√
A(A + 2)(A + 1)

cosh
[
s
(π

2
− θ4

)] }
,

(A27)

where tan θ4 =
√
A(A + 2) for 0 ! θ4 ! π/2. The spe-

cial case A = 1 yields θ4 = π/3 and ⟨n4(qB)⟩ =
8π2|cAA|2[sinh( sπ

6 ) − s/(2
√

3) cosh( sπ
6 )]/[s q5

B cosh( sπ
2 )].
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3. Three-Bosons: SKM equations & Danilov’s UV  solution
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factor of 1/(2π )3 multiplying the definition of n(q), which is
normalized to 3, the number of particles.

III. ASYMPTOTIC FORMULAS FOR THE SPECTATOR
FUNCTIONS

We now consider the asymptotic behavior of the spectator
function to derive some analytic formulas and compare to cor-
responding numerical results. To access the large momentum
regime

√
E3 ≪ q, we take the limit µ → ∞ and E3 = EAA =

EAB → 0. The coupled equations for the spectator functions
consequently simplify and become

χAA(y) = 2
π

[

y

√
A + 2

4A

]−1 ∫ ∞

0
dx

x

y
G1a (y,x)χAB (x), (11)

χAB(y) = 1
π

(
A + 1

2A

)3/2
[

y

√
A + 2

2(A + 1)

]−1

×
∫ ∞

0
dx

x

y
[G1a (x,y)χAA(x)

+AG2a (y,x)χAB (x)], (12)

where

G1a (y,x) ≡ log
2A(x2 + xy) + y2(A + 1)
2A(x2 −xy) + y2(A + 1)

, (13)

G2a (y,x) ≡ log
(y2 + x2)(A + 1) + 2xy

(y2 + x2)(A + 1) −2xy
. (14)

We now proceed to solve these equations by using the
Ansätze

χAA(y) = cAA y−2+is and χAB(y) = cAB y−2+is , (15)

where y once again denotes a (dimensionless) momentum.
Inserting the functions (15) in the set of coupled equations and
performing the scale transformation x = y z, in the integrand
of Eqs. (11) and (12), one has the following set of equations:

cAA = cAB

2
π

√
4A

A + 2

×
∫ ∞

0
dz z−2+1+is log

2A(z2 + z) + (A + 1)
2A(z2 −z) + (A + 1)

, (16)

cAB = 1
π

(
A + 1

2A

)3/2√ 2(A + 1)
A + 2

×
∫ ∞

0
dz z−2+1+is

[
cAA log

2A(1 + z) + z2(A + 1)
2A(1 −z) + z2(A + 1)

+A cAB log
(1 + z2)(A + 1) + 2z

(1 + z2)(A + 1) −2z

]
. (17)

Inserting Eq. (16) into (17), the set of coupled equations
can be written as a single transcendental equation

1
π

(
A + 1

2A

)3/2√ 2(A + 1)
A + 2

×
(
AI1(s) + 2

π

√
4A

A + 2
I2(s)I3(s)

)
= 1, (18)

where we have defined

I1(s) =
∫ ∞

0
dz z−1+is log

[
(z2 + 1)(A + 1) + 2z

(z2 + 1)(A + 1) −2z

]

= 2π

s

sinh
(
θ1s −π

2 s
)

cosh
(

π
2 s

) , (19)

I2(s) =
∫ ∞

0
dz z−1+is log

[
2A(z2 + z) + A + 1
2A(z2 −z) + A + 1

]

= 2π

s

sinh
(
θ2s −π

2 s
)

cosh
(

π
2 s

)
(
A + 1

2A

)is/2

, (20)

I3(s) =
∫ ∞

0
dz z−1+is log

[
2A(1 + z) + (A + 1)z2

2A(1 −z) + (A + 1)z2

]

= 2π

s

sinh
(
θ2s −π

2 s
)

cosh
(

π
2 s

)
(
A + 1

2A

)−is/2

. (21)

The angles are given by the equations tan2 θ1 = A(A + 2) and
tan2 θ2 = (A + 2)/A with the conditions that π/2 < θ1,θ2 <
π . For the special case of equal masses, i.e., A = 1, we have
θ1 = θ2, I1 = I2 = I3, and

(
1
π

√
4
3
I1(s)

)
+ 2

(
1
π

√
4
3
I1(s)

)2

−1 = 0, (22)

for which the physically relevant solution is seen to be

1
π

√
4
3
I1(s) = 1

2
. (23)

Using Eq. (19), we recover the celebrated Efimov equation for
the scaling parameter s of equal mass particles [16,30– 32].
Another very interesting and relevant special case is when
there is no interaction between the two A particles, in which
case we can set cAA = 0 in Eq. (17). The equation for the scale
factor [Eq. (18)] now simplifies and we get

A
π

(
A + 1

2A

)3/2√ 2(A + 1)
A + 2

I1(s) = 1. (24)

This equation was first derived in Ref. [30] and later also
discussed in Ref. [32]. The derivation of Eqs. (23) and (24)
by using the asymptotic forms for the spectator functions
reproduces the well-known results for the scaling parameter
s. In Fig. 1, we plot the scaling factors exp(π/s) for the case
when all three subsystems have resonant interaction, which
is the expression in Eq. (18) valid for EAA = EAB = 0 (solid
line), and when there is no interaction in the AA subsystem,
which is the expression in Eq. (24) valid for EAB = 0 (dashed
line). Our results are identical to those shown in Figs. 52 and
53 of Ref. [32].

What is important to notice is that for mA ≫ mB (A ≪ 1),
the scaling factors are very similar, and both are much smaller
than the equal mass case where A = 1. We can therefore see
that in the AAB system with heavy A and light B, we should
expect many universal three-body bound states (s large or
equivalently eπ/s small) irrespective of whether the heavy-
heavy subsystem is weakly or strongly interacting. Recent
experiments with mixtures of 6Li and 133Cs indicate that there
could be a resonance of the 6Li-133Cs subsystem at a point
where the scattering length in the 133Cs-133Cs system is close
to zero, i.e., weak interaction in the AA subsystem [33,34].
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where tan θ4 =
√
A(A + 2) for 0 ! θ4 ! π

2 . Notice that α5
and α6 are simple poles while α1, α2, α3, and α4 are poles of
second order [see Eq. (A22)].

To evaluate the contour integral, we choose the closed
path as in the calculation of n3(qB), namely, a rectangle of
vertices −R, +R, +R + iπ , and −R + iπ (for R → ∞),
which encompasses the poles α1, α2, and α5 in the upper-half
plane. Once more, we are left with four integrals, i.e., J1 which
extends along the real axis from −R to +R, J2 from +R
to +R + iπ , J3 from +R + iπ to −R + iπ , and J4 from
−R + iπ to −R. In the limit R → ∞ we find that J1 = I1,
J3 = e−sπI1, and J3 and J4 → 0. In this way, we find that

I1 = 2π i

1 + e−πs
[Res(f,α1) + Res(f,α2) + Res(f,α5)]. (A24)

Calculating the residues is tedious, except for the case of
α5 where Res(f,α5) = 0. After some algebraic work, the real
and imaginary parts of I1 are given by

Re I1 = π (A + 1)3A
4
√
A(A + 2) cosh

(
sπ
2

) cosh
[
s

(
π

2
− θ4

)]
, (A25)

Im I1 = π (A + 1)4

4
√
A(A + 2) cosh

(
sπ
2

)

×
{√

A(A + 2) sinh
[
s
(π

2
− θ4

)]

− s A
A + 1

cosh
[
s
(π

2
− θ4

)] }
. (A26)

Combining Eqs. (A20), (A22), and (A26), the nonoscillat-
ing part of n4(qB) finally reads as

⟨n4(qB)⟩ = 8π2|cAB |2A2

s q5
B cosh

(
sπ
2

)
{

sinh
[
s
(π

2
− θ4

)]

− s A√
A(A + 2)(A + 1)

cosh
[
s
(π

2
− θ4

)] }
,

(A27)

where tan θ4 =
√
A(A + 2) for 0 ! θ4 ! π/2. The spe-

cial case A = 1 yields θ4 = π/3 and ⟨n4(qB)⟩ =
8π2|cAA|2[sinh( sπ

6 ) − s/(2
√

3) cosh( sπ
6 )]/[s q5

B cosh( sπ
2 )].
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FIG. 1. Scaling parameter s as a function of A = mB/mA for
EAA = 0 and EAB = 0 (resonant interactions) (solid line) and for
the situation where EAB = 0 but with no interaction between AA
(dashed line). The arrows show the corresponding mass ratios for
133Cs-133Cs-6Li and 87Rb-87Rb-6Li.

Returning to Eqs. (11) and (12), there are two solutions
which are complex conjugates of each other, i.e., z± is . Apart
from an overall normalization, there is still a relative phase
between these two independent solutions. We determine this
phase by requiring that the wave function be zero at a
certain momentum denoted q∗. This parameter is known as
the three-body parameter [31,32]. This is the momentum-
space equivalent of the coordinate-space three-body parameter
which is now believed to be simply related to the van der Waals
two-body interaction of the atoms in question [35– 43]. In this
case, the asymptotic form of the spectator functions becomes

χAA(q) = cAA q− 2 sin(s log q/q∗) and

χAB(q) = cAB q− 2 sin(s log q/q∗). (25)

Here, we use q to denote momentum and we see that our
boundary condition χ (q∗) = 0 is fulfilled. The asymptotic
form of the spectator function should be compared with the
solutions of the subtracted equations in the limit of large
momentum, constrained by the window κ0 ≪ qB ≪ µ, where
κ0 ≡

√
E3. The spectator functions χAA(q) for Rb-Rb-Li and

Cs-Cs-Li compared to the respective asymptotic formula are
shown in Fig. 2. In the idealized limit where κ0 = 0 and
µ → ∞, the two curves would coincide. We can thus see
the effect of finite value of these two quantities on each end of
the plots. The window of validity for the use of the asymptotic
formulas, i.e.,

√
E3 ≪ q ≪ µ, can be clearly seen in these

figures.

IV. ASYMPTOTIC MOMENTUM DENSITY

In this section, we discuss the asymptotic momentum den-
sity for n(qB), i.e., the single-particle momentum distribution
for the B particle. From Eqs. (8) and (10), we can split the
momentum density into nine terms, which can be reduced
to four considering the symmetry between the two identical
particles A. This simplifies the computation of the momentum
density to the form

n(qB) =
4∑

i=1

ni(qB), (26)

where

n1(qB) = |χAA(qB)|2
∫

d 3pB

1
(
E3 + p2

B + q2
B
A+2
4A

)2

= π2 |χAA(qB)|2
√

E3 + q2
B
A+2
4A

, (27)

FIG. 2. Left: χAA(q) of the sixth excited state for EAA = EAB = 0, E3 = − 8.6724 × 10− 12E0, solution of the coupled equations (1) and (2)
(solid line), compared with the asymptotic formula (15) for Rb-Rb-Li molecule (dotted line). Right: Same as left side for the eighth excited state
of Cs-Cs-Li, E3 = − 8.9265 × 10− 13E0. Here, we have defined E0 = h̄2µ2/mA and we work in units where h̄ = mA = µ = 1 as explained in
the text.
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FIG. 8. Rescaled momentum distribution for the ground, first, and
second excited states as a function of the relative momenta of 133Cs
to the center of mass of the pair 6Li-133Cs (qA) and 6Li to the center
of mass of the pair 133Cs-133Cs (qB ). The subsystem binding energies
are all set to zero. Normalization to unity at zero momentum.

We first consider the binding energies. Assuming that the
Cs-Cs and Rb-Rb two-body energies are zero, we have, for
a system satisfying the universality condition a≫ r0, that
any observable should be a function of the remaining two-
and three-body scales, which can be conveniently chosen as
E

(N)
3 and EAB (the Cs-Li or Rb-Li two-body energy). Here,

N denotes the N th consecutive three-body bound state with
N = 0 being the lowest one. Thus, the energy of an N + 1
state can be plotted in terms of a scaling function relating only
EAB and the previous state. The limit cycle, which should
be in principle reached for N → ∞, is achieved rapidly so

FIG. 9. Rescaled momentum distribution for the ground, first,
second, and third excited states as a function of the relative momenta
of 87Rb to the center of mass of the pair 87Rb-6Li (qA) and 6Li to
the center of mass of the pair 87Rb-87Rb (qB ). The subsystem binding
energies are all set to zero. Normalization to unity at zero momentum.

that we can construct the curve shown in Fig. 5 using N = 2
[21,22,44]. The negative and positive parts of the horizontal
axis refer, respectively, to virtual and bound two-body AB
states. The circles labeled from 1 to 6 mark the points where
the momentum distributions have been calculated. The points
1 and 4 represent the Borromean case, the points 2 and 5 are
the “Efimov situation,” and in points 3 and 6 AB is bound.

Figures 6 and 7 give the momentum distributions of the
second excited states for the energy ratio

√
EAB/E3 given

by the points labeled from 1 to 6 in Fig. 5. According to
our previous calculations [45], for fixed three-body energy,
the size of the system increases as the number of bound
two-body subsystems increase. Thus, it seems reasonable that
the momentum distribution for the Borromean case (point 1)
decreases slower. This behavior is clearly seen on the left side
of Figs. 6 and 7. The distance of one atom to the center of
mass of the other two is much larger for 6Li than for 133Cs or
87Rb, due to the large difference of the masses, such that the
decrease of the momentum distribution for the heavier atom
(qA set) decreases much slower than that for the lighter one
(qB set). This also reflects on the momentum from which the
leading-order decay 1/q4 starts to be dominant. This difference
becomes evident on the right side of Figs. 6 and 7, where we
plotted q4n(q). Thus, the q4 term is dominant above (20–40)κ0
for qb and much slower for qA at about (60–100)κ0.

Figures 8 and 9 show the rescaled momentum distributions
for the ground, first, and second excited states. In these figures,
the subsystem energies were chosen to zero, corresponding
to the transition point to a Borromean configuration. In this
situation, the only low-energy scale is E3 (remember that the
high-momentum scale is µ = 1). Therefore, in units in which
µ = 1, to achieve a universal regime, in principle, to wash
out the effect of the subtraction scale µ, we have to go to a
highly excited state (see, for instance, Fig. 2 and the comments
inside the text associated to it). However, a universal low-
energy regime of n(qB)/n(qB = 0) is seen for momentum of
the order of

√
E3, even for the ground state which is smaller

than excited states. Thus, in practice, the universal behavior of
the momentum distribution is approached rapidly.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have calculated the single-particle mo-
mentum distribution of systems consisting of two identical
bosonic particles and a third particle of a different kind with
short-range interaction in the regime where three-body bound
states and the Efimov effect occurs. We analytically calculate
the asymptotic momentum distribution as a function of the
mass ratio and find that the functional form is sensitive to this
ratio. In the case of equal mass, we reproduce the results of
Ref. [12], i.e., that the leading term has a q−4 tail while the
subleading contribution is q−5 times a log-periodic oscillatory
function that is characteristic of the Efimov effect and that
depends on the scale factor (and thus on the mass ratio) of
the Efimov states. In particular, we find that for general mass
ratios, there is a nonoscillatory q−5 contribution which appears
to only vanish (and leave the oscillatory contribution behind)
when the mass ratio is 0.2, 1, or 1.57.

To exemplify our study, we consider 133Cs-133Cs-6Li and
87Rb-87Rb-6Li where we numerically determine the coefficient
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of 6Li-133Cs-133Cs and 6Li-87Rb-87Rb are discussed in Sec. V
for different choices of the interaction parameters. Section VI
contains conclusions and outlook for future studies.

II. FORMALISM

We consider a system that has an AAB structure, where
the two A particles are identical bosons and the third B
particle is of a different kind. When we discuss our results
in the following, we will focus on two combinations that
are of interest to current experimental efforts in cold atoms:
A = 133Cs, B = 6Li and A = 87Rb, B = 6Li.

Since we are interested in the universal limit where
the range of the two-body potentials can be neglected, we
consider purely zero-range interactions in the following. More
precisely, if r0 is the range of the two-body potential, we are
assuming that the scattering length ais a≫ r0. For simplicity,
we will use units where h̄ = mA = 1 from now on. After
partial wave projection, the s-wave coupled subtracted integral
equations for the spectator functions χ and the absolute value
of the three-body binding energy E3 are given by [19– 21]

χAA(y) = 2τAA(y; E3)
∫ ∞

0
dx

x

y
G1(y,x; E3)χAB(x), (1)

χAB(y) = τAB(y; E3)
∫ ∞

0
dx

x

y
[G1(x,y; E3)χAA(x)

+AG2(y,x; E3)χAB(x)]; (2)

τAA(y; E3) ≡ 1
π

[√
E3 + A + 2

4A
y2 ∓

√
EAA

]−1

, (3)

τAB(y; E3) ≡ 1
π

(
A + 1

2A

)3/2
[√

E3 + A + 2
2(A + 1)

y2

∓
√

EAB

]−1

, (4)

G1(y,x; E3) ≡log
2A(E3 + x2 + xy) + y2(A + 1)
2A(E3 + x2 −xy) + y2(A + 1)

− log
2A(µ2 + x2 + xy) + y2(A + 1)
2A(µ2 + x2 −xy) + y2(A + 1)

, (5)

G2(y,x; E3) ≡log
2(AE3 + xy) + (y2 + x2)(A + 1)
2(AE3 −xy) + (y2 + x2)(A + 1)

− log
2(Aµ2 + xy) + (y2 + x2)(A + 1)
2(Aµ2 −xy) + (y2 + x2)(A + 1)

, (6)

where x and y denote (dimensionless) momenta. We will
use the natural logarithm throughout this paper, i.e. the one
with base e. Here, we have introduced the mass number
A = mB/mA. The interaction energies of the AA and AB
subsystems are parametrized by EAA and EAB , and the plus
and minus signs in (3) and (4) refer to virtual and bound
two-body subsystems, respectively [22– 24]. We map EAA and
EAB into the usual scattering lengths aAA and aAB through
the relation E ∝ |a|−2. This relation typically holds for broad
resonances, and a more detailed mapping needs to be done in
the general case [25]. Throughout most of this work we will
focus on the region close to unitarity in the AB system, i.e.,
|aAB | → ∞ or EAB → 0. In light of the fact that experimental

information about mixed systems of the AAB type is still
sparse, we will consider the two extreme cases (i) EAA = 0
and (ii) a noninteracting AA subsystem.

In the numerical work presented later on, we will set
µ2 = 1 for the subtraction point (see for instance Ref. [21]
for a detailed discussion and references). On the other hand,
in the analytical derivations, we will take the limit µ → ∞.
We note that this subtraction method is basically equivalent
to the procedure employed by Danilov [26] to regularize
the original three-body Skorniakov-Ter-Martirosian equation
[27]. A very detailed recent discussion of these issues was
given by Pricoupenko [28,29].

Defining as k⃗α (α = i,j,k) the momenta of each particle
in the rest frame, we have that the Jacobi momenta from one
particle to the center of mass of the other two and the relative
momentum of the two are given, respectively, by

q⃗k = mij,k

(
k⃗k

mk

− k⃗i + k⃗j

mi + mj

)
= k⃗k and

(7)

p⃗k = mij

(
k⃗i

mi

− k⃗j

mj

)
,

where {i,j,k} is an even permutation of the particles {A,A′,B}
and we have used that k⃗i + k⃗j + k⃗k = 0 in the center-of-mass
system. The reduced masses are defined such that mij = mimj

mi+mj

and mij,k = mk (mi+mj )
mi+mj +mk

.
In the following we define exactly what we mean by single-

particle momentum distributions for particles of types A and
B. For a zero-range potential, the three-body wave function
for an AAB system, composed by two identical particles A
and one different B, can be written in terms of the spectator
functions in the basis |q⃗Bp⃗B⟩ as

⟨q⃗Bp⃗B |%⟩ = χAA(qi) + χAB(qj ) + χAB(qk)
E3 + H0

=
χAA(qB) + χAB

(∣∣p⃗B −q⃗B

2

∣∣)+ χAB

(∣∣p⃗B + q⃗B

2

∣∣)

E3 + H0
,

(8)

or in the basis |q⃗Ap⃗A⟩ as

⟨q⃗Ap⃗A|%⟩

=
χAA

(∣∣p⃗A − A
A+1 q⃗A

∣∣) + χAB

(∣∣p⃗A + 1
A+1 q⃗A

∣∣) + χAB(qA)

E3 + H ′
0

,

(9)

where H0 = p2
B

2mAA
+ q2

B

2mAA,B
and H ′

0 = p2
A

2mAB
+ q2

A

2mAB,A
. The re-

duced masses are given by mAA = 1
2 , mAA,B = 2A

A+2 , mAB =
A

A+1 , and mAB,A = A+1
A+2 .

The momentum distributions for the particles A and B are

n(qB) =
∫

d3pB |⟨q⃗Bp⃗B |%⟩|2,
(10)

n(qA) =
∫

d3pA|⟨q⃗Ap⃗A|%⟩|2

and they are normalized such that
∫

d3q n(q) = 1. Note that
our definition of momentum distributions as well as their
normalizations differ from Ref. [12]. In Ref. [12] there is a
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Beyond the oscillator length and the two-body scattering
length, the van der Waals length and thermal wavelength may
play a role. The former measures the two-body potential
range, but since we are interested in the universal regime
where states are weakly bound, a characteristic of Efimov
states, they live outside the potential range. For the latter, we
assume that the temperature is sufficiently low for it to have
negligible effect. Our formalism allows for finite temperature
to be included in observables such as recombination rates in
the same way as done without squeezing.

3. Two-body properties

We first consider the AB two-body subsystem. The energy as
function of by/a3D for fixed a3D is shown in figure 1(a) where
this ratio characterizes the dimension of the trap with respect
to the two-body radius. We have normalized the energy in
figure 1(a) to its value in the 2D limit (by→0). We see an
evolution from the 3D limit (far right side) with energies that
remain constant until around the point where by∼r0. This is
when the external confinement starts to be felt strongly by the
particles and the energy moves quite fast towards the 2D
limiting value. It is interesting to note that the energy at which
by= r0 (marked by black points in figure 1) is almost the
same, E2/E2

2D(by= r0)∼0.05, independent of a3D for
a3D/r0?1. The evolution from 2D to 1D is shown in
figure 1(b) and confirms our expectation that further binding
occurs as we approach the 1D limit.

4. Spectral flow from 3D to 2D

We now proceed to discuss Efimov trimer states as we con-
tinuously squeeze along one direction, i.e. as by decreases.
The mass ratio is taken to be mB/mA= 6/133 [52]5 and is
relevant for current studies of trimers in 6Li–133Cs mixtures
[42, 43, 45, 47]. This gives a relatively small Efimov scaling
factor eπ/ s= 4.788 [53, 54] so that many Efimov trimers can
be expected. We choose a large a3D/r0;105 to perform our
calculations.

The three-body energies of the Nth trimer, E3
N, relative to the

two-body energy are shown in figure 2 as function of by/a3D.
Here a3D is related to the three-body parameter expressed by κ*,
where E2 N2

3
0*�k m = =( ) ( ) and E E aN

3
0

2 3D
2*k= == ( )

109. With our present choice of parameters we have the relation
κ* a3D≈3.15×104. The figure remains as function of κ*a3D
but with the numbers on the x-axis multiplied by 3.15×104. In
the 3D limit to the far right of figure 2, we are able to numerically
resolve five Efimov states which scale in energy with e2π/ s as
expected. In the strict 2D limit on the far left of figure 2, we find
that four states survive as expected [51]. The behavior in between

these two integer limits is intriguing and depends sensitively on
how we treat the two-body energy.

The dashed lines in figure 2 show the results obtained
when assuming that the two-body energy does not vary with
by and is set by the 3D value, E E by2 2

3D= l ¥( ). As by
decreases we see a number of systematically occurring abrupt
drops in E3

N. Each drop is from an initial value down to one of
the energies that the system is destined to reach in 2D where
the Efimov effect is gone.

Specifically, as we decrease by (going from right to left in
figure 2) the state that is weakest bound in the 3D limit first
decreases its energy to a value corresponding to the strongest
bound state in the 2D limit. It then has roughly constant energy
until the next level decreases its energy and demands the position
in the spectrum, and pushed the state down to an energy around
that of the first excited state in the 2D limit. These processes are
repeated until the four 2D positions are reached and the
remaining three-body state has disappeared into the continuum
(a single state in our case). They are reminiscent of the so-called
Zeldovich rearrangement [55], in which the short-range interac-
tions compete with the long-range influence of the confinement.

It is important to notice that before these abrupt changes
of the energies, the Efimov scaling among the states is intact.
Thus, we have a quantitative measure of how much squeezing
different Efimov states can survive. A rough estimate of the
jumps can be inferred by considering the Efimov attractive
inverse square potential which extends to around a3D [56, 57],
and therefore the radial extent of the least bound state is
roughly a3D. In turn, the first spectral jump is expected around
by∼a3D, since here the state becomes strongly influenced by
the trap [58]. Subsequent jumps now follow an Efimov
scaling law and occur when by∼a3D/e

Nπ/ s.
Keeping a constant E2 value is presumably experimen-

tally challenging as it requires tuning of interactions to
compensate for the effects of the confinement on E2. We
therefore now study the case where this is not done so that we

Figure 2. Trimer energies plotted in units of the two-body energy for
mB/mA= 6/133 as functions of by/a3D. For the solid lines the two-
body energy varies with by while for the dashed lines it is kept
constant (see text for discussion). Solid and dashed lines have
different colors for visibility.

5 The dimensional requirement for the Efimov effect to occur, 2.3 < d< 3.8
[33] depends generally on the masses in the system and the numbers will thus
change for our ratio of mB/mA = 6/133, although the expected modification
could rather small, see [52] for related work.
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and

I1(A,s) =
∫ ∞

0
dz

zis

z
ln

[
(z2 + 1)(A + 1) + 2z

(z2 + 1)(A + 1) −2z

]
, (10)

I2(A,s) =
∫ ∞

0
dz

zis

z
ln

[
2A(z2 + z) + A + 1
2A(z2 −z) + A + 1

]
, (11)

I3(A,s) =
∫ ∞

0
dz

zis

z
ln

[
2A(1 + z) + (A + 1)z2

2A(1 −z) + (A + 1)z2

]
, (12)

which are the same integrals found in Ref. [23] for the D = 3
problem. We note that the result r = 1 −D is exact. This
can be proved by setting r = 1 −D + ϵ and expanding the
characteristic equation in a power series in ϵ: For given values
of D and A, it can be verified analytically that the only possible
solution occurs for ϵ = 0.

Results. In cold-atom traps when a three-atom bound state
crosses the continuum threshold, the atoms can recombine,
forming a deeply bound two-atom molecule plus an atom. The
recoil energy of the atom-molecule system is much larger than
the depth of the ultracold trap in such a way that the three atoms
are lost. The three-atom recombination peaks appear at two-
body scattering lengths a

(N)
− separated by multiplicative factors

of exp(π/s). Deviations from the D = 3 limit, excluding range
corrections, are associated with the response of the three-body
system to the dimension changes between D = 2 and D = 3.
Note that in heteronuclear systems two scattering lengths can
be distinguished: one for the AA subsystem, and another one
for the AB subsystem. The present solution given by Eq. (7)
corresponds to the limit of both scattering lengths tending to
infinity.

Once A is fixed, the imaginary part s of the exponent of
q in Eq. (7) is the solution of Eq. (8). The boundaries of the
region of values of D for which the Efimov effect survives are
determined by the existence of nonzero values of s; close to
the threshold, the Efimov effect disappears as s → 0 and the
energy gap between levels tends to infinity. The boundaries are
shown in Fig. 1.

In experiments, it is possible to change the confining
potential in order to squeeze one or two directions of the trap
transforming the cloud in a quasi-(D = 2) or quasi-(D = 1)
environment, respectively. Rigorously, as mentioned, all these

FIG. 1. Regions (in blue) where there is a real solution for the
scaling factor s, solution to Eq. (8); outside this “dimensional band,”
the Efimov effect does not exist. For A = 1 we reproduce exactly
the result in Ref. [7], where the dimensional limits are given by
2.3 < D < 3.8.

systems are in D = 3; however, the three-body system em-
bedded in the atomic cloud feels an effective dimension
when compressed—as shown in previous works [24,25]— that
makes the most excited Efimov states disappear one by one
until reaching the expected number of bound states in D = 2.

The physical reason behind the disappearance of the Efimov
states close to the critical dimension can be easily understood
considering the Born-Oppenheimer (BO) approximation, valid
in the situation mA ≫ mB . In the BO approximation, an
effective potential coming from the exchange of the light
particle between the two heavy ones can be extracted. The
form of this potential is well known in D = 3, given by
Ref. [26], −(s + 1/4)/R2, where R is the separation distance
between the heavy particles, and s is the imaginary part of
the exponent of q in Eq. (7). The Efimov effect is due to the
“fall to the center” for s > −1/4. For heteronuclear systems
in D dimensions the effective potential is still proportional to
−1/R2, but the strength is now more complicated, depending
on D and A. For a given mass ratio, at the critical dimensions
on either side of D = 3, i.e., D > 3 and D < 3, the Efimov
effect disappears precisely at the critical strength −(D −2)2/4
[27], reproducing the result for D = 3 [26], where the fall to
the center stops.

Figure 2 shows the value of the discrete scaling factor
exp(π/s) for a wide range of the mass ratio A and of the band

FIG. 2. Discrete scaling factor as a function of the mass ratio
A = mB/mA, and dimension D. The black dashed line shows the
well-known situation of D = 3.
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where BN ⌘ �m↵
~2 EN and u ⌘ u(R) ⌘ R�(R). In the

present adiabatic approximation, with m↵ >> m� , we
have µ(2↵)� ⇠ m� , such that µ(2↵)�/m↵ gives approxi-
mately the light to heavy mass ratio. In the following,
the mass-ratio will be defined by A ⌘ m�/m↵ ⌧ 1.

For a radial potential ⇤/R2, where ⇤ is dimensionless,
the system has no bound-state for ⇤ > �1/4, and is
anomalous for ⇤ < �1/4 due to the singularity at R ! 0.
There is no lower limit in the energy spectrum, which
requires a regularization, such that R > rc, where rc is
a radial short-range cut-o↵. Therefore, for a boundary
condition we fix the wave function to zero at R = rc. It
is important to note that the geometric scaling property
is independent on the value of rc. So, in the unitary limit
(a ! 1), we can rewrite Eq. (9) as


d
2

dR2
+

s
2
N + 1

4

R2
� BN

�
u = 0 (N � 3), (10)

where sN ⌘ sN (A) ⌘
q�

2+A
4A

�
(N � 2)�2 � 1

4 (function

of the mass ratio) is defining the adiabatic scaling fac-
tor. For the corresponding three-body system ( N = 3),
this scaling factor should correspond to the non-adiabatic
one, which is usually defined as s0 [28]. (In the following,
we take s3 as defining our adiabatic value for s0).

In our simplified scheme, we are generalizing the BO
approach to the case of two-heavy and (N � 2)-light
bosons, in a way that we can obtain a general relation
between the corresponding scaling factors with the case
that we have just one-light boson:

s
2
N = (N � 2)s23 + (N � 3)/4

' (N � 2)s20 + (N � 3)/4 (N � 3), (11)

which implies that sN > sN�1, and therefore the geomet-
rical ratio between the energies of two successive states of
the N�particle system is smaller than the corresponding
ratio for the (N �1)-particle system. This pattern seems
to persist even in the case where the BO approximation
is not applicable like in what was found theoretically for
the four and three-boson systems with a zero-range po-

tential when B(1)
4 /B(0)

4 ⇠ 1/127, with B(0)
3 << B(1)

4 in
the strict unitary limit (for zero two-body bound-state,
B↵� = 0) [1].

Therefore, the bound-state spectrum for the two-heavy
and (N � 2)-light boson, with identical particles not in-
teracting, is obtained by the solution of Eq. (10), which
follows in exact analogy with the BO approach for the
three-body case, where we have two-heavy and one-light
bosons. As detailed in Ref. [24], the three-body spec-
trum is obtained from the zeros of a modified Bessel
function of the second kind with pure imaginary order
is3 (as defined in [26]): u(R) =

p
3RKis3(3R), where

3 ⌘
p
B3. From the condition that the wave-function

must be zero at some short distance, with a cut-o↵ reg-
ularizing the potential at R = r1, for shallow bound-

state levels, we have
q
B(n)
3 r1 = e

�n⇡/s3 ⇥ f(s3), where
f(s3) is a constant factor which does not depend on

specific levels. From this solution, emerges the well-
known geometric scaling of the three-body spectrum,

with B(n)
3 = e

�2n⇡/s3B(0)
3 (n = 0, 1, ...), as well as the

fact that the bound-state energies are scaling with the
inverse square of the cut-o↵ at short distances, 1/r21.
We should also note that, the boundary condition of

the wave-function at long distances is giving by the ab-
solute value of the two-body scattering length, with the
number of the levels in the spectrum being

N3 ' s3

⇡
ln(|a|/r1) (12)

, which is infinite in the unitary limit [24]. As we move
away from the unitary limit, the number of trimers de-
crease with the ratio between adjacent binding energies
following a scaling relation, as shown in Fig. 2 of Ref. [27]
for the case of three-identical particles.
Before going to the next section where our aim is

to analyze the inter-relation between the spectrum of a
N�boson system with the spectrum of subsystems, it is
of interest to check the extension of the validity of the
adiabatic Born-Oppenheimer approach, close to unitary
limit. For that, we are verifying numerically the s3 val-
ues, obtained for the case with N = 3 (one light and
two boson system) for di↵erent values of the mass-ratio
A ⌘ m�/m↵ ⌧ 1, in comparison with the values of s0
reported in Ref. [28]. The results presented in Table I are
illustrative on the accuracy of the BO approach, which
improves as the mass ratio A decreases.

TABLE I. Values of the scaling factor s3 and e⇡/s3 , obtained
by solving the adiabatic equation (10) in comparison with the
respective exact values as reported in Ref. [28].

A 0.1 0.05 0.04 0.03 0.02 0.01 0.001

s3 1.1995 1.7456 1.9624 2.2784 2.8057 3.9891 12.675

s0 1.4682 1.9194 2.1142 2.4067 2.9084 4.0612 12.698

e⇡/s3 13.725 6.0483 4.9574 3.9703 3.0641 2.1980 1.2813

e⇡/s0 8.4977 5.1383 4.4193 3.6889 2.9452 2.1675 1.2807

B. Two-heavy and two-light bosons

As discussed in the previous subsection, the solu-
tions for the spectrum of two-heavy and (N � 2)-light
bosons are obtained by following in close analogy the
same analytical expression as in the case of N = 3.
Therefore, the bound-state wave functions presented in
Eq. (10) are given by modified Bessel functions of the
third kind with pure imaginary order isN , such that
u(R) =

p
NRKisN (NR), with 

2
N ⌘ BN . However, the

cases with N � 4 will di↵er from the case of N = 3 by the
boundary conditions. For example, in the case that N =
4 (two-heavy and two-light bosons), with the wave func-
tion vanishing at R = r2, the shallow energy states in the

RH H
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As discussed in the previous subsection, the solu-
tions for the spectrum of two-heavy and (N � 2)-light
bosons are obtained by following in close analogy the
same analytical expression as in the case of N = 3.
Therefore, the bound-state wave functions presented in
Eq. (10) are given by modified Bessel functions of the
third kind with pure imaginary order isN , such that
u(R) =

p
NRKisN (NR), with 

2
N ⌘ BN . However, the

cases with N � 4 will di↵er from the case of N = 3 by the
boundary conditions. For example, in the case that N =
4 (two-heavy and two-light bosons), with the wave func-
tion vanishing at R = r2, the shallow energy states in the

A=mL / mH

3

adiabatic approach, it is being considered two identical
heavy particles (↵ = 1 and 2) with masses m↵, interact-
ing with a third particle (� = 3) having mass m� ⌧ m↵,
near the unitary limit. The limits of validity of the adi-
abatic approach is being verified in case of a three-body
system, by comparing with exact numerical approaches
for di↵erent two-body interactions and mass ratios. In
the present work, we extend this approach to the gen-
eral case where we have N � 2 bosons of the kind � and
discuss the implications of the e↵ective heavy-heavy two-
body interaction for the corresponding N�boson system
in terms of new interwoven limit cycles.

II. BORN-OPPENHEIMER APPROXIMATION

A. Two-heavy and (N � 2)-light boson system

For the case of a many-body mixture with two-species
of particles, two-heavy and (N � 2)-light ones, we de-
fine the corresponding coordinates as x1,x2 for the two
heavy particles, being xj (j = 3, 4, ..., N) for the (N�2)-
light particles. Next, we consider the minimal condi-
tion for the interactions, such that the identical particles
are not interacting between each other, remaining only
the heavy-light interactions. Within this condition, we
define the relative coordinates as R = (x1 � x2) and
rj=1,2,...,N�2 =

�
xj+2 � x1+x2

2

�
. In this case, the corre-

sponding three-body Schrödinger equation is given by

H =

2

4� ~2
m↵

r2
R + V0(R) +

N�2X

j=1

Hj

3

5 , (1)

where  ⌘  (r1, r2, ..., rN�2,R) is the total wave func-
tion, V0 is the potential between the two-heavy parti-
cles, and Hj is a three-body Hamiltonian corresponding
to the interaction between the two heavy particles with
each light particle j. Hj is given by

Hj = � ~2
2µ(2↵)�

r2
rj +

2X

i=1

Vi

✓����rj + (�1)i
R

2

����

◆
, (2)

where µ(2↵)� ⌘ 2m↵m�/(2m↵+m�) is the reduced mass
for the ↵↵� system and Vi is the interaction for the
heavy-light system.

The heavy particles should move much slower than the
light one, in such a way that we can apply the Born-
Oppenheimer approximation. Within this limit, the total
wave function can be decomposed as

 ⌘  (r1, r2, ..., rN ,R) = �(R)
N�2Y

j=1

 R(rj),

where R is a parameter in  R(rj). In this way, in our
assumption that all the N light particles interact in the
same way with the heavy particles, the eigenvalue so-
lution E(R) for each light boson interacting with the

two-heavy bosons will provide the e↵ective adiabatic po-
tential for the two heavy particles, which is given by
EN�2(R) = (N � 2)E(R). The corresponding set of cou-
pled system is given by
"
� ~2
2µ(2↵)�

r2
rj +

2X

i=1

Vi

✓����rj + (�1)i
R
2

����

◆
� E(R)

#
 R(rj) = 0


� ~2
m↵

r2
R + V0(R) + EN�2(R)

�
�(R) = EN�(R), (3)

such that E3 is given the energy solution for the system
with two-heavy and one light boson. As the asymptotic
behavior of E(R) is not a↵ected by V0(R), we can assume
V0(R) = 0 within our purpose. For the light-heavy parti-
cles one can take short-range separable interactions, with
V1 and V2 having the operator form �|gihg|. In this way,
the light-heavy particle system can easily be solved in
momentum space by considering Yamaguchi form-factors
with g(p) ⌘ (p2 + �

2). Further, it is assumed a shallow
bound state, �~2/(2µ↵�a

2), where µ↵� is the reduced
mass and a ⌘ a↵� the scattering length of the light-heavy
system.
By assuming no interaction between the two-heavy

sub-system, V0(R) = 0, within the Born-Oppenheimer
approximation [24], the e↵ective potential in the equa-
tion for �(R) is given by

EN�2(R) = �(N � 2)

2

⌫
, (4)

where ⌫ ⌘ µ(2↵)�/m� and  ⌘ (R) should satisfy the
relation


� 1

a

�
R = e

�R
. (5)

The solution in the limit a ! 1 leads to

EN�2(R) = �(N�2)
�
2

⌫R2
, where � = e

�� = 0.5671433.

(6)
By relaxing the unitary limit, considering any other value
for a, the expression (5) for (R) can be fitted within a
function

(R) ⇡ 1

a
+

⇣
�

R
+
"

a

⌘
e
�R/a

, (7)

where the constant " is adjusted numerically. With good
accuracy we obtain " ⌘ 0.185. With the above expression
for (R), the e↵ective potential EN�2(R) for the two-
heavy particle system,

EN�2(R) = � (N � 2)

⌫a2

h
1 +

⇣
�a

R
+ "

⌘
e
�R

a

i2
, (8)

will satisfy both limits R ⌧ a and R � a. Near the
unitary limit, where R ⌧ a, by keeping in the potential
the next Coulomb-like term, the bound-state equation
for (N � 2)-light and two-heavy particles is


d2

dR2
+

(N � 2)m↵

2µ(2↵)�

✓
�2

R2
+

0.7008
Ra

◆
� BN

�
u = 0, (9)

New limit cycles beyond 3-body!

“Interwoven limit cycles in the spectra of mass imbalanced many-boson system“

De Paula, Delfino, TF,  Tomio arXiv:1903.10321v1 [quant-ph]

LLHH Naidon, Few-Body Syst. 59, 64 (2018)

(N � 2) Light bosons
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of the three-body spectrum is given by

B(n3)
3 = e�2n3⇡/s0B(0)

3 , (n3 = 0, 1, ...), B(0)
3 ⇠ r�2

1 , (16)

The factor s3 was replaced by the exactly known values
s0, as given in Table I, in order to improve the approxi-
mation of our results obtained for the cases we have four
or more particles. Therefore, from Eq. (13), the relation
between trimer (N = 3) and tetramer (N = 4) scaling
factors, is given by s

2
4 = 2s20+1/4. So, for a given level n3,

we have the following relation for the four-body levels:

B(n4)
4,n3

= e
�2n4⇡/s4B(0)

4,n3
. (17)

This is realizable for the four-body states below the
ground-state trimer (n3 = 0), being limited in the other
cases, as will be discussed.

The BO relation given by Eq. (13), for the specific case
of N = 4 with two heavy and two light bosons, was also
presented recently in Ref. [36], under the same simplified
conditions where only the non-identical particles (heavy-
light) have non-zero interactions. By considering A ⌧ 1
the BO approximation was shown to be fully consistent
with non-adiabatic FY calculations.

III. INTERWOVEN CYCLES

A. Three and four-body spectrum

Notice that, by considering a tetramer, with two-heavy
and two-light particles, where only the light-heavy par-
ticles interact weakly (such that B↵� is close to zero),
we should have a four-body spectrum (↵↵��) intercon-
nected with two identical three-body spectrum (↵↵�).
We have the energy ratios for the trimer and the tetramer
spectrum from the tail of the long-range potential. But
we should point out the relation between the four-body
and three-body levels. Concerning that, we have the
schematic Fig. 1 to illustrate the dependences of the
tetramers on the trimer energies.

The e↵ective BO potential for the two heavy particles,
at large distances has the three-plus-one (3+1) channel
threshold, for each possible trimer state, as shown in
the figure. The e↵ective potential holds the tetramer
bound states below the ground state trimer, otherwise
tetramer resonances are placed in the e↵ective poten-
tial below each excited trimer. The size of each trimer
cuts down the long-range e↵ective BO potential in the
tetramer system (indicated in the figure by the arrows),
and therefore when it is decreased, or the trimer binding
increases, the excited tetramers tends to disappear in the
3+1 threshold as the attraction drops. However, the cor-
relation between the energies of successive tetramers in
the potential pocket is not destroyed due to the universal
long-range potential (well known in the Efimov physics).
This correlation was indeed verified in the case of four
identical bosons at the unitary limit [1]. Besides that, no
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FIG. 1. The e↵ective long-range potential (in the unitary
limit) between the two heavy particles, in the BO approxi-
mation of the two-light and two-heavy particle system, con-
sidering the di↵erent 3+1 thresholds. The potential and all
the energies are dimensionless, scaled by a factor 100 times
the three-body ground-state energy, with x given in terms
of the long-range cut-o↵ R(0)

c , where the four-body system is
damped at the size of the three-body ground-state. The hor-
izontal dashed lines indicates the 3+1 dissociation threshold
at the three-body energies E(n)

3 (n =0 is the ground state),
with the ratio between them fixed by the Efimov factor e2⇡/s0 .
The arrows indicate schematically where the long-range po-
tential in the 4-body system is damped, at the size of the
n�th 3-body state.

.

matter to which trimer they are associated, the correla-
tion between successive tetramer levels is verified to be
universal and again dominated by a long-range potential,
with strength larger than the corresponding one for the
trimer.
In the case that A = 0.01, from the adiabatic results

given in Table I, we obtain B(n3)
3 /B(n3+1)

3 =4.8312, imply-

ing that B(n4)
4,n3

/B(n4+1)
4,n3

= 3.0326. However, as explained
before we can improve the results obtained for the case of
N � 4, by considering the non-adiabatic results obtained
for the three-body scaling factor. In this way, we have

B(n3)
3 /B(n3+1)

3 = 4.6979 and B(n4)
4,n3

/B(n4+1)
4,n3

= 2.9739.
The Table II displays our results up to N = 6, for mass-
ratios A between 0.001 and 0.04.
Now, we should note that the above relations are giv-

ing us the ratio between two consecutive states of the
spectrum for a fixed number of N� bosons. However,
each spectrum of a given number N�light boson should
be related to the spectrum of (N � 1) bosons. All these
spectra are related to the light-heavy unitary limit, which
is B↵� = 0 (or a↵� ! 1), such that, we have the spectra
given by interwoven limit cycles. Let us consider explic-
itly the bound-state spectra (negative energies), with a
maximum of four particles, in the unitary limit (B2 = 0),

where the three-body levels are given by E
(n3)
3 ⌘ �B(n3)

3
and, for each three-body level n3 we have the correspond-

H-H B.O. potential 4-body system HHLL @ unitarity 
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for the zero-range interaction are given by [13]:

K(q, p) =
2p

(3/4)q2 + (2/3)p2

Z
d⌦dkk2

⇢
K(k, p)

q2 + k2 + (2/3)p2 + q k z0

+
27 K

⇣
k, 3

p
k2 + p2 � 2 p k z1

⌘

q2 + (70/9)p2 + 9k2 � 16p k z1 � (8/3)pq z2 + 3 k q z0
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where ⌘ is a complex quantity defined by ⌘ ⌘ r + i s4, with r and s4 real
parameters. The square-root factors in the above equations are included for
convenience. The FY equations can be simplified by resorting to the reduced
amplitudes fK (x) and gH (x) which now depend only on one dimensionless
variable. However, the exponent ⌘ has to be determined as part of the solution
of the problem. By reminding the three-boson case, the solution of the STM
equation is reduced to one amplitude which is a homogeneous function. The
problem is transformed to a transcendental equation to be solved for the expo-
nent of the homogeneous function. In the four-boson problem, we are following
the same steps, deriving the corresponding coupled integral equations for the
reduced amplitudes introduced in (4), where the unknown complex exponent
⌘ is included.
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3 FY equations for the reduced amplitudes

Inserting the solutions written as (4) in the coupled integral equations (3) and
using the dimensionless variables y = k/q and x = p/q, one gets that:
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, (6)

where, in the second integrand of (5) we made the change (3y) ! y. The next
step is to solve the above set of linear coupled equations to obtain ⌘, fK (x)
and gH (x). However, stemming by the fact that ⌘ should be complex, as one
can recognize by inspecting the first term of (5), which reduces in the UV limit
to the three-boson STM equation, leading to the well known transcendental
equation for ⌘. In this contribution, instead of solving Eqs. (5) and (6) as they
are, we simplify them to illustrate the mechanism which allows the emergence
of complex exponents, leading to log-periodic solutions and potentially new
cycles, as already found in the numerical study of Ref. [14].

4 Approximate form of the UV limit of the FY equations

The FY equations are manipulated and approximated in order to put in evi-
dence their ultraviolet form. For that we keep only the quadratic terms in the
above set of coupled integral equations, which results in:

fK (x) =
4x�⌘

p
3

Z
d⌦dy

y1+⌘

x2 + y2 + xy z0

�
fK (y) + ( 13 )

⌘fK
�
1
3

�
+ gH

�
1
2

� 
, (7)

gH (x) =
2

⇡

Z 1

0

dy y

y2 + x2

n
gH (y) + 2

� 2y
3

�⌘
fK

�
2
3

�o
. (8)

Approximate UV form of FY eqs.:

Solution: UV FY eqs. 

fK(x) = f0 & gH(x) = x⌘
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One should note that if in Eq. (7) only the first term in the right side is kept,
the integral equation reduces to the UV STM equation for the three-boson
system solved in [3] carrying the well-known Efimov discrete scaling factor,
s0.

The solution of (7) and (8) demands that fK(x) = f0 should be a constant.
This solution comes as the only alternative to keep the property of scale invari-
ance unaltered in Eq. (7), if otherwise one chooses any non-constant function
for fK(x) this property will be violated. Therefore, let us define in Eq. (8)
G⌘(x) ⌘

�
3⌘/2⌘+1

�
gH (x) + x⌘f0:

G⌘(x) = f0x
⌘ +

2
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0
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⌘G0
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(x). (9)
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1� J (⌘)
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2

⇡

Z 1

0

zdz

1 + z2
z⌘ =

�1

sin(⌘⇡/2)
. (10)

Consequently,
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✓
2

3

◆⌘ 2⇥
1 + sin

�
⌘⇡

2

�⇤f0x⌘ . (11)

By replacing gH (x) given by Eq. (11) in (7), we have

1 =
4
p
3

⇢
1 +

1

3⌘
+

1

2⌘
↵⌘

�Z
d⌦dz

z1+⌘

1 + z2 + z z0
. (12)

Next, we arrive at a transcendental equation for ⌘, after the angle integrations:

1 =
4

p
3⇡

(
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1
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�

1

3⌘

"
2

1 + sin
�
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2

�
#)Z 1

0
dy y⌘ log

1 + y2 + y

1 + y2 � y
, (13)

and the above integration can be performed analytically yielding:
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1
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"
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�
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2

�
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⇤
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. (14)

In the case of considering only the part of the above transcendental equation
identified as the three-boson one, the solution is given by ⌘ = �1 + is0 and
one has that:

1 =
4

p
3⇡

Z 1

0
dy y�1+is0 log

1 + y2 + y

1 + y2 � y
=

8
p
3 s0

sinh ⇡s0
6

cosh ⇡s0
2

, (15)

3-boson eq. SKTM
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which results in s0 = ±1.00624... associated with the Efimov cycles. It is quite
clear that, in the four-boson case the transcendental equation has contributions
from the presence of the fourth boson, with the exponent obtained for the
three-boson solution being necessarily changed. This means that any limit
cycle associated with the four boson system is distinct from the three-boson
one. The spectrum should be interwoven, depending in principle on di↵erent
scales, building up an emergent and subtle phenomena.

The solution of the transcendental equation (14), obtained numerically, is

⌘ = �0.346 ± 1.552i. (16)

In view of these solutions, comes the necessity to introduce a new parameter
to define the reduced amplitude. We observe that our UV approximated solu-
tion has an exponent with 1.552 for the imaginary part to be compared with
1.25 [14], obtained numerically by solving the FY equations for the zero-range
interaction. Such di↵erence between the imaginary part of ⌘ from the solution
of the approximate UV equations, can be traced back to the freezing of the am-
plitudes fK and gH to fixed arguments in Eqs. (7) and (8) in addition further
dependences on the angles and momentum are disregarded turning enhancing
the integrand. For example, one source of the enhancement of the integrand
that is clear can be found in Eq. (5), where the argument of gH runs from 1/2
to 1, while it is frozen to 1/2, that means we are assuming a larger value for
this function as it decreases when its arguments increases, which implies in a
larger integrand, which as a consequence increases the imaginary part of ⌘. A
complete treatment of the FY equations (5) and (6) are desirable and will not
change our conclusions on the change in ⌘ form the Danilov’s solution.

5 Final remarks

It is remarkable that the solution of the transcendental equation (14), ob-
tained by approximating the reduced FY equations in the UV limit, presents
two independent solutions, given by the positive and negative values of the
imaginary part of ⌘. Thus, the continuous scale symmetry is broken and one
new parameter is necessary to define the solutions. The reduced amplitude of
Eq.(11) is given by

gH (x) = x�0.346 sin (1.552 log(x⇤4)) , (17)

where one new parameter is introduced for the dependence on the short-
distance scale.

The coupling between the FY components H and K, enhances the attrac-
tive kernel, driving the exponent found in the solution of the three-boson UV
equation, to a larger value for the imaginary part with respect to the Efimov
s0 value. Numerically by solving a regulated form of the FY equations it was
found s4=1.25 [14], where s4 > s0, which is kept by the approximate form of
the UV form of the FY equations that we solved. If one starts to decouple

Solution of the transcendental equation 

Compare to imaginary part:   1.25 i  from Hadizadeh et al. PRL107 (2011) 135304

K(q, p) ⇡ f0
sin(s4 log q/⇤⇤)q

3
4q

2 + 2
3p

2
& H(q, p) ⇡

sin(s4 log p/⇤⇤)q
1
2q

2 + p2
<latexit sha1_base64="hrkLAX3JjJjGVhsD3URCkKImHDI="></latexit>

B(N)
4 /B(N+1)

4 = 151 = exp(2⇡/s4) & s4 = 1.25
<latexit sha1_base64="e2ynOmZXis2qsJ//uPrfZSVBJqU="></latexit>
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Scale symmetry breaking to a Discrete scale symmetry

4-body scale
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Broad thoughts on scale symmetry breaking in QFT

Ø Beyond non-relativistic physics

Ø Spontaneous Chiral symmetry breaking & Miransky scaling, N.Cim. A90(1985)149
Kaplan,Lee,Son PRD80 (2009)12005

Ø Relativistic bound states within Bethe-Salpeter approach:

Fermions coupled to scalar, vector etc fields: coupling constant is dimensionless (QCD) -
instabilities  above critical value associated with log-periodic solutions… Efimov physics!

Fermion-fermion: Dorkin, Beyer, Semikh, Kaptari, Few Body Syst. 42 (2008) 1

Fermion-fermion: Carbonell, Karmanov, EPJA 46 (2010) 387

Fermion-boson: Alvarenga Nogueira, Gherardi, TF, Salmè, Colasante, Pace 
PRD100 (2019)016021

10. Scale inv. breaking in relat. bound states with Bethe-Salpeter eq.



Example: Fermion-boson Bethe-Salpeter equation ½+

Alvarenga Nogueira et al. in preparation

4 M << m limit

The final coefficients in the limit M/m << 1 reads:

c(0)11 ! �k2 � k2
4, c(1)11 ! �k2 � k2

4 � ik4m 

k2
;

c(0)12 ! � 1

M

⇣
i k0

4(k
2 + k2

4) +m (k
02 + k

02
4 )

⌘
,

c(1)12 ! 1

M

✓
ik4 �m +

k2
4

k2
(ik4 �m )

◆
;

c(0)21 ! M [ik0
4 +m ] , c(1)21 = �M

k2
[ik4 �m ] ;

c(0)22 = �(k
02
4 + k

02) + ik0
4 m , c(1)22 = �1� k4

k2
(k4 + im ) .
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The component �2 should go to zero for M ! 0 in order that one obtains a finite BS

amplitude, as the definitions below demand:

�⇡(k, p, Jz) =
h
O1(k) �1(k, p) +O2(k) �2(k, p)

i
U(p, Jz) , (15)

where �i are unknown scalar functions that depend upon the available momenta and are deter-

mined by solving the BSE. The operators Oi act on the spinor U (with normalization Ū U = 1)
and one has

O1(k) = I , O2(k) =
/k

M
, (/p�M) U(p, Jz) = 0 . (16)

However, the ratio �2/M could be finite. To examine this, possibility, let us check the consis-

tence of the couple set of equations for �1 and �2.

Suppose that one solves the integral equation for �1 not for M = 0 but in its vicinity,

namely M << m , and we solve the uncoupled equation for �1, assuming that �2/M ! 0.
The solution for �1, could be inserted in equation for �2, and due to the coupling coefficients

c(0),(1)21 / M , the inhomogeneous linear equation for �2 could be solved. The conclusion, would

be that �2 is indeed proportional to M , and then �2/M is finite. Furthermore, such behaviour

of �2/M produce a finite contribution to the integral equation for �1 considering the coupling

coefficient c(0),(1)12 / 1/M for M ! 0, and therefore c(0),(1)12 �2 would be finite, which is against

our initial supposition to disregard �2 to solve the uncoupled equation for �1. To avoid such

contradiction, the coupled set of equations for �1 and �2/M should be solved simultaneously

in the limit of M ! 0.
The naive assumption that �2 goes to zero faster than M is not acceptable, as we concluded

that �2/M is finite, and in this limit still one has to solve the coupled set of integral equations,

for �1 and �2/M . For the effect of comparing �1 and �2 the choice is to use
m 

M �2.

5 High momentum limit

5.1 With angular integration

The final equation in the limit where k, k4 >> µ,m ,m�,M reads
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We introduce the variables

k4 = K cos' and k = K sin' (22)

with 0 < ' < ⇡. Then

a = (k4 � k0
4)

2 + ~k2 + ~k02 = K2 +K 02 � 2KK 0 cos' cos'0

b = 2 |~k||~k0| = 2KK 0 sin' sin'0. (23)
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and we make the ansatz:
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in order that the above equation has solution the real part of ⌘ should be constrained to:

�1 < Real[⌘] + 4 < 0 with � 5 < Real[⌘] < �4 . (31)

For our analysis of the support it is important to observe the following limits for y ! 0 in the

non-diagonal part of the kernel of the equation for F1 and for the diagonal term of the kernel

in the equation for F2. In the first case the kernel for y ! 0 behaves as:

⇢
csc'

�
(1 + y2) cos'� 2y cos'0� L

y
� 4 cos' sin'0

�����
y!0

! �4 y sin2 ' sin 2'0 , (32)

and in the second case one has that:

⇢
� sin'

✓
2y2 + (1 + y2 � 2y cos' cos'0) csc2 '

◆
L

y
+ 4 sin'0

�����
y!0

! 4

3
y2 sin2 ' (sin(3'0)� 9 sin'0) . (33)

The support (31) is illustrated in Fig. 2 and further discussed in what follows.

The solutions of the coupled set of integral equations (30) for each value of ↵ is found with

F1(') = sin2 ' and F2(') = sin2 ' . (34)

The complete solutions take the form

�1(k4, k) = K⌘+1
and �2(k4, k) = 0 , (35)

with

↵1(⌘) = �⇡(3 + ⌘)(5 + ⌘)(7 + ⌘)

4(6 + ⌘)
, (36)

and

�1(k4, k) = 0 and �2(k4, k) = K⌘ , (37)

with

↵2(⌘) = �⇡(6 + ⌘)(4 + ⌘)(2 + ⌘)

4(3 + ⌘)
. (38)

The relation between the two couplings forms is

↵ = ↵1(�9� ⌘) = ↵2(⌘) . (39)

The solutions (35) and (37) were checked by solving the integral equations (30) numerically.

Coming close to the extremes of ⌘ the solution is more demanding numerically. It was checked

that the numerical for F1(') = sin2(') and F2(') = sin2(') the coupling terms are very close

to zero, giving trivially the same results if they were decoupled. It is important to note that

the relative normalization of the functions �1(k4, k) and �2(k4, k) are not fixed by the solution

of (30), as the contribution from the coupling terms in the integral equations simply vanishes,

as our numerical solution indicated. To illustrate the vanishing of the non-diagonal terms, we

introduce the following function:

H12(y,') =

Z ⇡

0

d'0 sin'0

csc'

�
(1 + y2) cos'� 2y cos'0� L

y
� 4 cos' sin'0

�
, (40)

which corresponds to the non-diagonal term in the equation for F1 for the integrand with

F2('0) = sin2 '0
. The plot is given in Fig. 1, where the results of the numerical integration via

the Mathematica code are shown to be compatible with zero.
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Figure 1: The function H12(y,') for 0 < ' < ⇡ and 0.1 < y < 10.

The maximum value of ↵c = 1.18691... is found for ↵1(⌘) at ⌘ = �4.08918..., and for ↵2(⌘)
at ⌘ = �4.91082.... The functions ↵i(⌘) are plotted in fig. 2, and one observes for a given value

of ↵ < ↵c two solutions for ⌘ are found, while at ↵c only one solution is found. For ↵i above the

maximum value the exponent ⌘ is complex, and the BS equation in Euclidean space presents a

pair of log-periodic solutions, which demands one condition to determine the solution uniquely.

Although, the plot has been done for a large region, the solution of the coupled set of integral

equations is given by the values of ⌘ in the intersection between the supports of ↵1 and ↵2 as

written in (31).
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Figure 2: ↵1 (left frame) and ↵2 (right frame) as a function of ⌘ from Eqs. (36) and (38),

respectively.

5.1.1 Transverse amplitude

The transverse amplitude defined by

'T
i (k?) =

Z
dk4dkzK

⌘ / k⌘i+2
? , (41)

which can be compared directly with the corresponding light-cone amplitude, integrated over

the longitudinal momentum fraction. By choosing a given ↵  ↵c one determines the value of

⌘1 and ⌘2.
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Fig. 2.

B. Vector interaction

For the vector exchange case, the coupling constant is defined as

↵
V =

�
v
F �

v
S

8⇡
(35)

and it does not contain any mass in the denominator, given the dimensionless nature of the

vertex constants in the interaction Lagrangian. Being dimensionless the vertex constants,

the BSEs both in Euclidean and in Minkowski spaces, as well as the system of integral

equations for the NWF, have the property to be invariant under a scale transformation in

the ultraviolet region. Such a symmetry imposes a maximum value for the coupling constant,

beyond which the invariance is broken. One encounters a similar situation in the fermion-

fermion bound state problem in the ladder approximation both in Euclidean [21] and in

Minkowski space [6]. Here, we adopt a conservative point of view and present calculations

for moderate bindings, leaving the detailed study of the scale invariance breaking, that should

establish at larger bindings, for a future work [22]. Our results in Minkowski space, shown

in Table III up to B/m̄ = 0.5, nicely agree with the Wick-rotated calculations, analogously

to what happens for the scalar-exchange case.

In Table IV, the valence probabilities are shown for the vector exchange. In the range

of B/m̄ we have investigated, as dictated by the onset of a scale-invariant regime, they

smoothly decrease.
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The parameters used are m„ = mÂ = 1, µ = 0 and B = 0.5. The numerical result is
compared in the figure with the following product

“1.455 Â2(“, z) æ const ◊ f2(z) , (5.39)

showing that the asymptotic behavior for large “ coincides very well with the result
from the numerical solution of the original equation. It is remarkable that the simple
analysis for the scale invariant regime can represent so well the asymptotic behavior
of the original BSE. Moreover, such agreement supports the result found for the
dependence of – on ÷ in Eq. (5.32).
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Figure 5.4. The light-front wave function Â2(“, z0 = 0) obtained from the solution of the
original equation (5.8) as a function of “ (solid blue curve) and its product with the
asymptotic limit found in the high momentum limit (dashed black curve).

Another check of the power-law behavior in the UV limit, discussed in Ref. [48],
is on the extension of the numerical calculations for “/m̄2 > 40 for Eq. (5.8). The
fall-o� for that case can be described by C1/“2.26, for µ/m̄ = 0.15, and C2/“2.43, for
µ/m̄ = 0.50, what is in agreement with the values predicted by the scale invariance
analysis presented above.

5.2.2 High momentum limit in the Minkowski space

Next one can consider the asymptotic limit of the integral equation for the Nakanishi
weight functions in Minkowski space (5.8). The high momentum limit of the equation
is presented in Appendix H.4 where, for simplicity, the derivation is made for „2,
following what was found in Eqs. (5.29) and (5.31). As discussed in the appendix,
one can introduce the following ansatz

g2(“, z) = “rf2(z) (5.40)

where r = 2 + ÷

2 with the constraint that ≠1 < r < 0, which is equivalent to (5.27).
Following the conclusion of the results obtained from the Wick-rotated equation,

114 5. Boson-fermion bound state

the LFWF, defined as

„̃i(›, “; Ÿ2) = iM
⁄ Œ

≠Œ

dk≠

2fi
„i(k, p) =

⁄ Œ

≠Œ
d“Õ gi(“Õ, z; Ÿ2)

[“Õ + “ + (1 ≠ z2)Ÿ2 + z2m̄2 ≠ i‘]2
,

(5.14)
where › = q+

1 /p+ = k+/p+ + 1/2 = (1 ≠ z)/2. It is important to bear in mind
that the BS amplitude is properly normalized through its covariant normalization
condition for computing the LF distributions. The normalization procedure is
described in Ref. [48].

The LF longitudinal and transverse distributions, given by Eqs. (5.12) and
(5.13), are displayed, respectively, on the left and right panels of Fig. 5.2. In an
attempt of presenting a first investigation towards the description of a mock nucleon,
the results were computed for an unbalanced mass with ratio mS/mF = 2. Two
values of the exchanged vector boson mass are considered, namely µ/m̄ = 0.15
and µ/m̄ = 0.50, while the binding energy is fixed at B/m̄ = 0.1. For the
sake of completeness, the coupling constants associated with the exhibited results
are –V = 0.648 (µ/m̄ = 0.15) and –V = 0.898 (µ/m̄ = 0.5), while the valence
probabilities are Pval = 0.75 (µ/m̄ = 0.15) and Pval = 0.77 (µ/m̄ = 0.5). This
means that about 25% of the dynamical content is beyond the valence, which is
a notable amount considering that the binding energy for the case under scrutiny
is quite low. This is in accordance with the results presented for two-bosons in
Chap. 3 and in Ref. [39], meaning that valence models for highly relativistic systems,
extensively used in the literature, might have a large associated error due to the
lack of the dynamics beyond the valence. The fact that the valence distribution
„(›), on the left panel of Fig. 5.2, is not centered around › = 1/2 but at › = 1/3 it
is a straightforward consequence of the mass asymmetry in this case. It is worth
to reinforce that these results could be di�erent for a more realistic approach, that
includes, e.g., vertex and self-energy corrections. However, the general shape, before
properly applying the evolution to the result at the initial scale, should be the same.

A deep analysis on the LF-momentum distributions of the (1/2)+ model can
be found in Ref. [48]. Therein are also presented the valence probabilities and an
extensive physical interpretation of the features seen in the results.

The next step is to analyze in detail the asymptotic behavior of the transverse
momentum distribution. As it will be seen in the next section, the fall-o� of the
result obtained from the numerical solution of Eq. (5.7) for the vector exchange
coincides with the one predicted by the analytical analysis of the ultraviolet form
of the integral equations in the scale invariant regime. The current toy model,
although didactic, is quite simple and is lacking more realistic propagators and
interaction kernel. Naturally, if considered within QCD theory, the features brought
by scale invariance would be deeply changed as the theory has its own intrinsic scale.
Therefore, the discussion presented below is limited to the model discussed in this
chapter.

5.2 Scale invariance in the fermion-boson system
As discussed before, the coupling constant for fermion-boson system with the vector
exchange, –V = ⁄v

F
⁄v

S
/(8fi), is dimensionless, feature that follows from the nature
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space presents a pair of log-periodic solutions, which demands one extra scale to
determine the solution uniquely [142]. Although the study has been done for the
large momentum region, the solution of the original set of coupled integral equations
(5.7) is also given by the values of ÷ satisfying Eq. 5.27 for a given value of –. This
can be confirmed numerically for the general case, but one particular example will
be discussed.

The solutions (5.29) and (5.31) were confirmed by solving the integral equations
(5.23) numerically. When getting close to the extremes of ÷, given by Eq. (5.27),
obtaining the solution gets more demanding numerically. It was also checked
numerically that for the solutions in Eq. (5.28) the terms coupling the integral
equations of Eq. (5.23) are very close to zero. Therefore, the equations can be
decoupled, obtaining the same aforementioned results (considering that „2/M æ 0).

One can now use the results from the Wick-rotated equation and derive the
asymptotic behavior of the LFWF. The first step is to obtain the NIR of the BS
amplitude in the asymptotic region, i.e

„i(k2) =
⁄ Œ

0
d“

⁄ 1

≠1
dz

gi(“, z)
(k2 ≠ “ + ı‘)3 æ 1

(k2 + ı‘)≠ ÷
2

, (5.34)

recalling that z = 1 ≠ 2›. The solution of Eq. (5.34) can be found using the following
ansatz

gi(“, z) = “2+ ÷i
2 fi(z) . (5.35)

From that, the valence wave function in the asymptotic limit, written in terms of
the NIR, is expected to be proportional to the original LFWF, i.e.

Âi(“, z) =
⁄ Œ

0
d“Õ gi(“Õ, z)

(“Õ + “ + (1 ≠ z2)Ÿ2 + z2m2)2

=
⁄ Œ

0
d“Õ “Õ2+ ÷

2 fi(z)
(“Õ + “ + (1 ≠ z2)Ÿ2 + z2m2)2 Ã fi(z)

(“ + (1 ≠ z2)Ÿ2 + z2m2)≠1≠ ÷i
2

(5.36)

where the function fi(z) needs to be determined numerically, by solving the BSE
equation in the asymptotic limit. Despite of that, it is simple to see that the expected
ultraviolet behavior of the light-front wave function is given by

Âi(“, z) ≥ “1+ ÷i
2 . (5.37)

This result can be compared to the numerical solution of the coupled integral
equations (5.8).

One particularly interesting example, where the matching between results from
the original equation (5.8) and scale invariant high-momentum regime, is obtained
when – reaches its maximum value. In this case –c = –2(÷) u 1.187 and ÷ = ≠4.9108.
For this situation, as Â1 is expected to have a similar fall-o�, it will be presented
the results only for Â2:

Â2(“, z) ≥ “≠1.45541 . (5.38)

The above scaling behavior is expected to be independent of the bound state mass
and this should be verified numerically. In Fig. 5.4, it is exemplified the case
– = 1.189, which very close to the maximum value possible for the coupling constant.
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Summary

ü Scale invariance breaking & Efimov and Thomas effects;

ü Dimensional reduction & suppresion Thomas-Efimov effects;

ü Scale invariance breaking in 4-boson systems: 4body scale;

ü More particles with short-range interactions: B.O. approx. 
suggests new scales;  

ü Scale invariance breaking & Relativistic bound states.
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