
Parton Shower: From QCD to Monte Carlo event generators

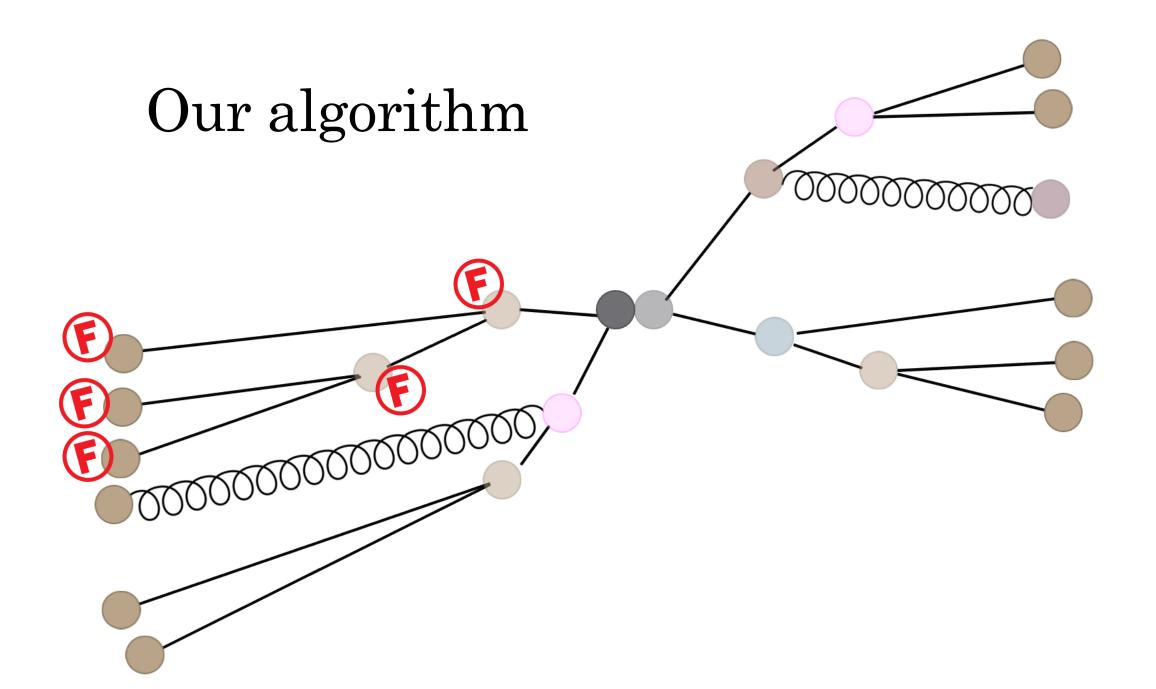
Íris Silva Sérgio Carrôlo

Pythia

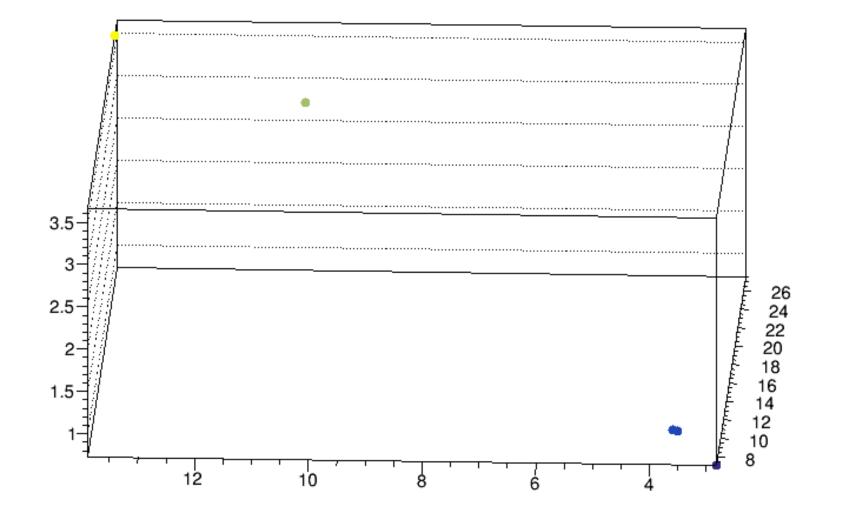
• Pythia is a tool for the generation of high-energy collisions;

- It can generate pp, pp, e +e and μ + μ collisions;
- Initial- and final-state algorithms are based on $k \bot \text{-ordered}$ evolution ;
- In our project we use pythia to simulate pp collisions.

Pythia – exemple of an event


	PYTHIA	Event Listing	(complete	event)							<u>-</u>			
no	id	name	status	mot	hers	daugh	ters	col	lours	p_x	Р_У	p_z	e	m
Θ	90	(system)	-11	Θ	0	0	Θ	0	0	0.000	0.000	0.000	5020.000	5020.000
1	2212	(p+)	-12	Θ	0	130	Θ	0	0	0.000	0.000	2510.000	2510.000	0.938
2	2212	(p+)	-12	0	0	131	0	0	0	0.000	0.000	-2510.000	2510.000	0.938
3	21	(g)	-21	12	12	5	б	102	101	0.000	0.000	220.970	220.970	0.000
4	21	(g)	-21	9	9	5	б	104	103	0.000	0.000	-93.065	93.065	0.000
5	21	(g)	- 23	3	4	10	11	104	101	122.068	-24.854	141.735	188.698	0.000
б	21	(g)	- 23	3	4	7	8	102	103	-122.068	24.854	-13.830	125.337	0.000
7	21	(g)	- 51	б	0	19	20	102	105	-63.359	24.142	-28.528	73.560	0.000
8	21	(g)	- 51	б	0	13	14	105	103	-58.708	0.712	7.309	59.166	0.000
9	21	(g)	- 53	15	15	4	4	104	103	0.000	-0.000	-100.454	100.454	0.000
10	21	(g)	- 51	5	0	16	17	104	106	76.698	-19.606	88.346	118.626	0.000
11	21	(g)	- 51	5	0	31	32	106	101	45.370	-5.247	54.172	70.856	0.000
12	21	(g)	- 53	21	21	3	3	102	101	0.000	0.000	221.754	221.754	0.000
13	21	(g)	- 51	8	0	24	24	105	107	-52.074	4.273	6.313	52.629	0.000
14	21	(g)	- 51	8	0	22	23	107	103	-6.634	-3.561	0.003	7.530	0.000
15	21	(g)	- 53	18	18	9	9	104	103	0.000	-0.000	-101.447	101.447	0.000
16	21	(g)	- 51	10	0	40	41	108	106	47.210	-14.543	51.907	71.656	0.000
17	21	(g)	- 51	10	0	46	47	104	108	29.487	-5.064	36.338	47.071	0.000
18	21	(g)	- 53	48	48	15	15	104	103	0.000	-0.000	-101.548	101.548	0.000
19	21	(g)	- 51	7	0	25	26	109	105	-62.787	25.463	-28.139	73.364	0.000
20	21	(g)	- 51	7	0	73	74	102	109	-0.573	-1.321	1.480	2.065	0.000
21	21	(g)	- 53	33	33	12	12	102	101	0.000	0.000	223.623	223.623	0.000
22	21	(g)	- 51	14	0	49	50	110	103	-0.705	-1.401	0.334	1.603	0.000
23	21	(g)	- 51	14	0	36	36	107	110	-14.614	-1.448	0.723	14.704	0.000
24	21	(g)	- 52	13	13	27	27	105	107	-43.389	3.560	5.260	43.852	0.000
25	21	(g)	- 51	19	0	75	75	109	111	-4.407	2.740	-2.866	5.928	0.000
26	21	(g)	- 51	19	0	28	29	111	105	-59.091	22.781	-25.187	68.155	0.000
27	21	(g)	- 52	24	24	30	30	105	107	-42.678	3.502	5.174	43.133	0.000
28	21	(g)	- 51	26	0	97	98	111	112	-33.899	13.955	-15.803	39.920	0.000
29	21	(g)	- 51	26	0	37	38	112	105	-25.643	8.863	-9.329	28.691	0.000
30	21	(g)	- 52	27	27	34	35	105	107	-42.227	3.465	5.119	42.677	0.000

Project and its applications


- Our main goal is to be able to visualize an entire collision from the beggining using the data from a pythia event.
- Its main applications:
- 1. For education purposes
- 2. Analyzing jet reconstruction theories' consistency
- 3. Better understanding of how today's theories reconstruct jets and what it looks like

The class that makes everything possible

class	s part{	
	public:	
		part();
		part(int);
		part(int,int,int);
		~part();
		<pre>int &index();</pre>
		<pre>int indexd(int);</pre>
		part *ret_daughter(int);
		<pre>void add_daughter(int);</pre>
		<pre>part operator=(part);</pre>
		<pre>void check_stuff();</pre>
		<pre>bool &finalstate(){return isfinal;}</pre>
		part *ret_mother();
	private	:
		int ind;
		bool isfinal;
		part *d1;
		part *d2;
		part *mother;
};		

Where we're at

