Extracting signals from busy LHC heavy-ion collisions

Alexandra Pardal & João Gonçalves August 8, 2019

Supervisors

Nuno Leonardo & Júlia Silva

Introduction

- We study B mesons (eg B⁺ : $\overline{b}u$)
- Produced in PbPb collisions at the LHC
- Use the large PbPb dataset collected by the CMS experiment in the last LHC run (November 2018)
 - Luminosity: 1.5 nb⁻¹
 - Total centre of mass energy: 5.02 TeV

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-08 20:48:06.756040 GMT Run / Event / LS: 326382 / 309207 / 7 • our signal (B meson) can be spotted in the invariant mass distribution (of the B decay products), reconstructed by CMS

Problem...

- The environment is not "clean".
- Objective: To obtain the distributions for signal variables
 - eg. B meson's transverse momentum, rapidity, etc
- How?
- We need to remove the background.
- How?
- Methods: Sideband subtraction or Splot.

Sideband Subtraction Method

- The invariant mass of reconstructed candidates is used as a separation variable.
- We assume variables of interest are uncorrelated with invariant mass.
- Two regions in the invariant mass plot:
 Sideband: There is just background (B)
 Peak zone: Signal and background (S+B)

background fit.

6

Sideband Subtraction Method

- In order to obtain the signal distribution for variable V
 - we start from the V distribution obtained from the peak region
 - ... and subtract the background obtained from the sideband region
 - $V_S = V_{S+B} \alpha V_B$
- *α* = ?
- The fitted background distribution is integrated over two regions:
 - ▷ P: Integral in the peak region
 - ▷R: Integral in the sideband region

• α = P/R

Sideband Subtraction Results

We will now present the results of the application of the sideband subtraction method in some of the variables we are studying.

Figure 2: Transverse momentum of the B meson

Figure 3: Rapidity of the B meson

Figure 4: Transverse momentum of the muon (from B decay)

- Great!, we managed to obtain the signal distributions from data
- What good is that?
- Example: verify whether MC simulation of the signal process matches the LHC data — ie to validate the MC

Further goals

- Use the RootStats class SPlot to fit the data and compare the result with the one obtained with the sideband method.
 - idea: the event likelihood (from fitting) is used to project the signal component of the dataset
- Apply the above methods to the complete data and MC datasets.
 - and evaluate the induced systematic uncertainty on our B meson production analysis in heavy ions

Questions?

Backup

"Special background"

- $B^+ \to J/\psi K^+$
- $B_S^0 \rightarrow J/\psi K^+K^-$

