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      Career path so far: mainly phenomenology

• Monte Carlo (and generally software) development

• High energy scattering in QCD (and N=4 SYM)

• NNLO calculations

• Techniques on computing Feynman diagrams

• Asymptotic expansions

• Loop-tree duality method, automatization of NLO 

calculations

Research line

Present and future wish list:

• Machine learning

• Heavy Ion physics

• Physics of Cosmic rays
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• Philosophy

Phenomenology (from Greek: phenomenon = “that which appears” 
and logos = “study”) is the philosophical study of the structures of 
subjective experience and consciousness.


•  Science in general

Observe “that which appears”, a collection of phenomena that share a 
unifying principle, and try to find patterns to describe it. The patterns 
might or might not be of fundamental nature or they might be up to a 
certain degree. 


•  Particle Physics (our familiar SM phenomenology, for example)

Use assumed fundamental laws to produce theoretical predictions for 
physical observables and then compare against experimental data to 
validate or falsify the assumed laws.

Extremely important the close collaboration between theorists and 
experimentalists. 

Phenomenology



A great example: Planck’s Law

Describes the spectral density of electromagnetic radiation emitted by a black body in 
thermal equilibrium at a given temperature T

h is the Planck constant… fundamental importance for quantum mechanics



The central role of scattering amplitudes in modern 
phenomenology

From the excellent recent article by C. White “Aspects of High Energy Scattering” (1909.05177), we 
quote a few reasons below of the importance of studying scattering amplitudes: 


• “What physical behaviour occurs in a given theory?”


• “What mathematical structures can amplitudes contain?”


• “Can we find common languages, that make e.g. QCD and gravity look the same?”  

Perturbation theory

Feynman Calculus

Go at a certain  
limit of the theory

What does this diagram tell us?



Exp(x)

1+x

1+x+x2/2

Fixed order expansion



Perturbative expansion (fixed order) in αs

1-loop

2-loop

3-loop

Grigo, Hoff, Steinhauser, 2015

NOTE: at the end, we study the properties of the expanded amplitudes
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The high energy or Regge limit

There is a plethora or things we access from studying that limit: 

• Integrability

• Gravity, black holes

• AdS/CFT

• Bern-Dixon-Smirnov amplitudes

• Factorization

• Separation between transverse and longitudinal d.o.f

• Transition from hard to soft scale physics

• Glueballs

• Phenomenology 


Furthermore, in Mathematics: 

number theory, abstract algebra, special functions, …


A crucial tool to study the Regge limit is 

Balitsky-Fadin-Kuraev-Lipatov (BFKL)

dynamics. In its essence, BFKL resums to all orders 

diagrams that carry large logarithms in energy. It goes beyond

fixed order.



Relevant considerations for the Regge limit

• Q: Is a fixed order calculation enough?
• A: It depends on the energy and the order, for asymptotic energies, no
• Q: What is the most relevant scale in high energy scattering?
• A: The center-of-mass energy squared s
• Q: In which functional form does s appear in the Feynman diagrams?
• A: αsm ln(s)n

• Q: Can one isolate those Feynman diagrams that come with a numerically 
important [αsm ln(s)n ~1] contribution?

• A: It depends (for this talk the answer is yes)
• Q: Can one resum all these diagrams with important αsm ln(s)n contributions to all 

orders in αs?
• A: It depends (for this talk the answer is yes)



Key question: What is the applicability energy window for 
BFKL? Is it at LHC energies? 



Key question: What is the applicability energy window for 
BFKL? Is it at LHC energies? 

In the Conclusions of that paper, it reads:



Large logs from virtual corrections 

ω

At leading logarithmic accuracy we resum terms of the form (αs log(s))n



The Reggeon 

ω

From now on, vertical propagators represent Reggeons

All the virtual corrections that carry 
leading-logs in s are accounted for
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Large logs from real emission corrections

Lipatov’s effective vertex

BFKL equation



BFKL

equation

The Pomeron

Many many 

phase-space diagrams

f (GGF)

From now on, ‘rungs’  
instead of real emissions
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Impact factors

f (GGF)

The gluon Green’s function

is process independent.


The effective couplings

to the colliding projectiles though 

which are called

Impact Factors 
are process dependent and

need to be calculated for each 

different process.



Why a Monte Carlo approach?
• We don't always know the analytic solution

• Even if we know it, we still want to store and analyze information 

about “differential” quantities (e.g. rapidities, transverse momenta, 
angles) that will  be lost once we perform the integrations analytically. 
We want this for two reasons: 


    1. Because then we can compare theoretical predictions to a

greater set of observables


    2. Because there are lots of things we can still learn about

concepts we use every day and maybe we don't fully understand


• We want to have a common language with people that work and are   
familiar with fixed order calculations and who are the majority in the 
“pheno” community – the interaction will help both sides


• We want to work in momentum space 

• Connect to Heavy Ion physics 

• Connect to physics of Cosmic Rays




Large logs from real emission corrections in 
a Monte Carlo setup
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• Assume Reggeons in the t-channel

• Assume you have only one real emission

• Do the phase-space integration —> res1

• Now assume you have two real emissions

• Do the phase-space integration —> res2

• Add the results: RES = res1+res2

• Now assume you have three real emissions

• Do the phase-space integration  —> res3

• Add the results: RES = RES + res3 

• Repeat until you have N real emissions with  

resN so tiny compared to RES such that 
you are allowed to claim convergence


NOTE: The phase-space integration is over 
rapidity and transverse momenta.



BFKLex, a BFKL Monte Carlo

• The main goal was to have a tool that calculates the gluon 
Green’s function (GGF) and other differential observables.


• The GGF is the solution to the BFKL equation. Use the 
iterative form:
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The implementation of the BFKLex is in C++



Some results with BFKLex
A Comparative study of small x Monte Carlos with and without QCD coherence effects 

G. C, M. Deak, A.Sabio Vera, P. Stephens

Nucl.Phys. B849 (2011) 28-44 


The Colour Octet Representation of the Non-Forward BFKL Green Function 

G. C, A. Sabio Vera.

Phys.Lett. B709 (2012) 301-308 


The NLO N =4 SUSY BFKL Green function in the adjoint representation  
G. C, A.Sabio Vera

Phys.Lett. B717 (2012) 458-461 


Bootstrap and momentum transfer dependence in small  x evolution equations  
G. C, A. Sabio Vera, C. Salas

Phys.Rev. D87 (2013) no.1, 016007 


A study of the diffusion pattern in N = 4 SYM at high energies  
F. Caporale, G. C, J.D. Madrigal, B. Murdaca, A. Sabio Vera

Phys.Lett. B724 (2013) 127-132 


Monte Carlo study of double logarithms in the small x region  
G. C, A. Sabio Vera

Phys.Rev. D93 (2016) no.7, 074004  

The high-energy radiation pattern from BFKLex with double-log collinear contributions  
G. C, A. Sabio Vera

JHEP 1602 (2016) 064



The high-energy radiation pattern from 
BFKLex with double-log collinear 

contributions
• Introduce three quantities related to the jet activity 

along the ladder. These characterize uniquely the 
event (but not fully). 

• average  

• average azimuthal  
    angle 
• rapidity ratio between 
    subsequent jets
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From two to three Reggeons: the Odderon 

BKP equation (Bartels-Kwiecinski-Praszalowicz)



…Physicists at the TOTEM experiment 
on the Large Hadron Collider in Geneva, 
Switzerland have found evidence for a 
physical effect called an “Odderon.” It is 
not direct evidence, but rather some 
results that would make more sense if 
this particle existed. […]

“… the Odderon is one of the possible 
ways by which protons can interact 
without breaking, whose manifestations 
have never been observed,” Simone 
Giani, spokesperson at the TOTEM 
experiment, told me. “This could be the 
first evidence of that.”

The Odderon makes headlines



The Pomeron vs the Odderon

*



Closed vs Open

Side note: BKP was found to have a hidden integrability being equivalent to a periodic spin chain 
of a XXX Heisenberg ferromagnet. This was the first example of the existence of integrable 
systems in QCD


Lipatov (1986, 1990, 1993)



Are Monte Carlo techniques adequate to 
compute the Odderon GGFs?

BFKL BKP
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Vertical lines are Reggeons
horizontal ones are gluons

OK ?



Monte Carlo approach is based on iteration

Iteration

BFKL

+ +

Iteration

BKP Closed

+

Iteration

BKP Open

L R M L R



Binary/ternary tree structure

number of diagrams:

2n (open) and 3n (closed)



Results:

kinematical configuration

All vectors live in the transverse momentum space

(r,θ): first component is in GeV, the second component in radians



Results:

“multiplicity”

Closed Open



Results:

energy plots

Closed Open

G.C. A. Sabio Vera, Eur.Phys.J. C78 (2018) no.6, 496



Outlook

Use the Monte Carlo solution of the BKP 

equation (Odderon) for phenomenology
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The constant need for higher order radiative 
corrections

• The LHC is a hadronic collider operating at high energies 
• higher multiplicities 
• proton structure 
• very large soft and collinear corrections 
• logarithms of ratios of very different scales 

• Rule of thumb: 
• LO:  order of magnitude evaluation 
• NLO: first reliable evaluation of the central value 
• NNLO: first reliable evaluation of the uncertainty 

• The Loop-Tree Duality promises to deal with virtual and 
real corrections on equal footing. In this talk we will see 
how the method copes with the virtual corrections



Number of legs N, number of spacetime dimensions is D.

Assume that it is UV and IR  finite.


     is the loop momentum and

are the momenta of the propagators.

                      is the Feynman propagator.

Introduce the shorthand notation                            , then

A generic one-loop integral

2 Notation

The FTT and the duality relation can be illustrated with no loss of generality by considering
their application to the basic ingredient of any one-loop Feynman diagrams, namely a
generic one-loop scalar integral L(N) with N (N ≥ 2) external legs.

ℓ

p1

q1
p2

q2

qN

pN

p3

Figure 1:Momentum configuration of the one-loop N-point scalar integral.

The momenta of the external legs are denoted by pµ1, p
µ
2, . . . , p

µ
N and are clockwise or-

dered (Fig. 1). All are taken as outgoing. To simplify the notation and the presentation,
we also limit ourselves in the beginning to considering massless internal lines only. Thus,
the one-loop integral L(N) can in general be expressed as:

L(N)(p1, p2, . . . , pN) = −i
∫

ddq

(2π)d

N∏

i=1

1

q2i + i0
, (1)

where qµ is the loop momentum (which flows anti-clockwise). The momenta of the internal
lines are denoted by qµi ; they are given by

qi = q +
i∑

k=1

pk , (2)

and momentum conservation results in the constraint

N∑

i=1

pi = 0 . (3)

The value of the label i of the external momenta is defined modulo N , i.e. pN+i ≡ pi.

The number of space-time dimensions is denoted by d (the convention for the Lorentz-
indices adopted here is µ = 0, 1, . . . , d− 1) with metric tensor gµν = diag(+1,−1, . . . ,−1).
The space-time coordinates of any momentum kµ are denoted as kµ = (k0,k), where k0 is
the energy (time component) of kµ. It is also convenient to introduce light-cone coordinates
kµ = (k+,k⊥, k−), where k± = (k0± kd−1)/

√
2. Throughout the paper we consider loop

integrals and phase-space integrals. If the integrals are ultraviolet or infrared divergent, we
always assume that they are regularized by using analytic continuation in the number of
space-time dimensions (dimensional regularization). Therefore, d is not fixed and does not
necessarily have integer value.
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Feynman propagators

2 Notation

The FTT and the duality relation can be illustrated with no loss of generality by considering
their application to the basic ingredient of any one-loop Feynman diagrams, namely a
generic one-loop scalar integral L(N) with N (N ≥ 2) external legs.
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and momentum conservation results in the constraint
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Figure 2: Location of the particle poles of the Feynman (left) and advanced (right) propa-
gators, G(q) and GA(q), in the complex plane of the variable q0 or q± .

3 The Feynman theorem

In this Section we briefly recall the FTT [1, 2].

To this end, we first introduce the advanced one-loop integral L(N)
A , which is obtained

from L(N) in Eq. (9) by replacing the Feynman propagators G(qi) with the corresponding
advanced propagators GA(qi):

L(N)
A (p1 , p2 , . . . , pN) =

∫

q

N∏

i=1

GA(qi) . (14)

Then, we note that
L(N)
A (p1 , p2 , . . . , pN) = 0 . (15)

The proof of Eq. (15) can be carried out in an elementary way by using the Cauchy
residue theorem and choosing a suitable integration path CL. We have

L(N)
A (p1 , p2 , . . . , pN) =

∫
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]
= 0 . (16)

The loop integral is evaluated by integrating first over the energy component q0 . Since
the integrand is convergent when q0 → ∞, the q0 integration can be performed along the
contour CL, which is closed at∞ in the lower half-plane of the complex variable q0 (Fig. 3–
left). The only singularities of the integrand with respect to the variable q0 are the poles of
the advanced propagators GA(qi), which are located in the upper half-plane. The integral
along CL is then equal to the sum of the residues at the poles in the lower half-plane and
therefore it vanishes.

The advanced and Feynman propagators are related by

GA(q) = G(q) + δ̃(q) , (17)
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Figure 3: Location of poles and integration contour CL in the complex q0 -plane for the
advanced (left) and Feynman (right) one-loop integrals, L(N)

A and L(N).

which can straightforwardly be obtained by using the elementary identity

1

x± i0
= PV

(
1

x

)
∓ iπ δ(x) , (18)

where PV denotes the principal-value prescription. Inserting Eq. (17) into the right-hand
side of Eq. (14) and collecting the contributions with an equal number of factors G(qi) and

δ̃(qj), we obtain a relation between L(N)
A and the one-loop integral L(N):

L(N)
A (p1 , p2 , . . . , pN) =

∫

q

N∏

i=1

[
G(qi) + δ̃(qi)

]

= L(N)(p1 , p2 , . . . , pN) + L(N)
1−cut(p1 , p2 , . . . , pN) + · · ·+ L(N)

N−cut(p1 , p2 , . . . , pN) . (19)

Here, the single-cut contribution is given by

L(N)
1−cut(p1 , p2 , . . . , pN) =

∫

q

N∑

i=1

δ̃(qi)
N∏

j=1
j ̸=i

G(qj) . (20)

In general, the m-cut terms L(N)
m−cut (m ≤ N) are the contributions with precisely m delta

functions δ̃(qi):

L(N)
m−cut(p1 , p2 , . . . , pN) =

∫

q

{
δ̃(q1 ) . . . δ̃(qm) G(qm+1 ) . . .G(qN ) + uneq. perms.

}
, (21)

where the sum in the curly bracket includes all the permutations of q1 , . . . , qN that give
unequal terms in the integrand.

Recalling that L(N)
A vanishes, cf. Eq. (15), Eq. (19) results in:

L(N)(p1 , p2 , . . . , pN) = −
[
L(N)
1−cut(p1 , p2 , . . . , pN) + · · ·+ L(N)

N−cut(p1 , p2 , . . . , pN)
]

. (22)

This equation is the FTT in the specific case of the one-loop integral L(N). The FTT relates
the one-loop integral L(N) to the multiple-cut‡ integrals L(N)

m−cut. Each delta function δ̃(qi)

‡If the number of space-time dimensions is d, the right-hand side of Eq. (22) receives contributions only
from the terms with m ≤ d; the terms with larger values of m vanish, since the corresponding number of
delta functions in the integrand is larger than the number of integration variables.

5



The Loop-Tree Duality

2 Notation

The FTT and the duality relation can be illustrated with no loss of generality by considering
their application to the basic ingredient of any one-loop Feynman diagrams, namely a
generic one-loop scalar integral L(N) with N (N ≥ 2) external legs.

ℓ

p1

q1
p2

q2

qN

pN

p3

Figure 1:Momentum configuration of the one-loop N-point scalar integral.

The momenta of the external legs are denoted by pµ1, p
µ
2, . . . , p

µ
N and are clockwise or-

dered (Fig. 1). All are taken as outgoing. To simplify the notation and the presentation,
we also limit ourselves in the beginning to considering massless internal lines only. Thus,
the one-loop integral L(N) can in general be expressed as:

L(N)(p1, p2, . . . , pN) = −i
∫

ddq

(2π)d

N∏

i=1

1

q2i + i0
, (1)

where qµ is the loop momentum (which flows anti-clockwise). The momenta of the internal
lines are denoted by qµi ; they are given by

qi = q +
i∑

k=1

pk , (2)

and momentum conservation results in the constraint

N∑

i=1

pi = 0 . (3)

The value of the label i of the external momenta is defined modulo N , i.e. pN+i ≡ pi.

The number of space-time dimensions is denoted by d (the convention for the Lorentz-
indices adopted here is µ = 0, 1, . . . , d− 1) with metric tensor gµν = diag(+1,−1, . . . ,−1).
The space-time coordinates of any momentum kµ are denoted as kµ = (k0,k), where k0 is
the energy (time component) of kµ. It is also convenient to introduce light-cone coordinates
kµ = (k+,k⊥, k−), where k± = (k0± kd−1)/

√
2. Throughout the paper we consider loop

integrals and phase-space integrals. If the integrals are ultraviolet or infrared divergent, we
always assume that they are regularized by using analytic continuation in the number of
space-time dimensions (dimensional regularization). Therefore, d is not fixed and does not
necessarily have integer value.

2

L(1)(p1, p2, . . . , pN ) =

Z

`

NY

i=1

GF (qi)

⌘ is a future-like vector such that ⌘µ = (⌘0, ⌘) ,with ⌘0 � 0, ⌘2 = ⌘µ⌘
µ � 0

Dual propagator, keeps proper track of the small imaginary 
parts. Notice that (qj-qi) does not depend on the loop 
momentum. It is e�(qi) ! e�(qi) = 2⇡ i ✓(qi,0) �(q

2
i �m2

i )



A graphical representation

of the Loop-Tree Duality

i.e. a d-dimensional vector that can be either light-like (η2 = 0) or time-like (η2 > 0)
with positive definite energy η0 . Note that the calculation of the residue at the pole of
the internal line with momentum qi changes the propagators of the other lines in the loop
integral. Although the propagator of the j-th internal line still has the customary form
1/q2j , its singularity at q2j = 0 is regularized by a different i0 prescription: the original
Feynman prescription q2j + i0 is modified in the new prescription q2j − i0 η(qj − qi), which
we name the ‘dual’ i0 prescription or, briefly, the η prescription. The dual i0 prescription
arises from the fact that the original Feynman propagator 1/(q2j + i0) is evaluated at
the complex value of the loop momentum q, which is determined by the location of the
pole at q2i + i0 = 0. The i0 dependence from the pole has to be combined with the i0
dependence in the Feynman propagator to obtain the total dependence as given by the
dual i0 prescription. The presence of the vector ηµ is a consequence of using the residue
theorem. To apply it to the calculation of the d dimensional loop integral, we have to
specify a system of coordinates (e.g. space-time or light-cone coordinates) and select one of
them to be integrated over at fixed values of the remaining d− 1 coordinates. Introducing
the auxiliary vector ηµ with space-time coordinates ηµ = (η0 , 0⊥, ηd−1 ), the selected system
of coordinates can be denoted in a Lorentz-invariant form. Applying the residue theorem
in the complex plane of the variable q0 at fixed (and real) values of the coordinates q⊥ and
q′d−1 = qd−1 − q0ηd−1/η0 (to be precise, in Eq. (27) we actually used ηµ = (1, 0)), we obtain
the result in Eq. (30).

The η dependence of the ensuing i0 prescription is thus a consequence of the fact that the
residues at each of the poles are not Lorentz-invariant quantities. The Lorentz-invariance
of the loop integral is recovered only after summing over all the residues.

p1

p2

pN

p3

ℓ = −
N∑

i=1

pi−1 pi

pi+1

qi−1

δ̃(qi−1 )

1
q2i − i0 ηpi

Figure 5: The duality relation for the one-loop N-point scalar integral. Graphical represen-
tation as a sum of N basic dual integrals.

Inserting the results of Eq. (28)–(30) in Eq. (27) we directly obtain the duality relation
between one-loop integrals and phase-space integrals:

L(N)(p1 , p2 , . . . , pN) = − L̃(N)(p1 , p2 , . . . , pN) , (32)

where the explicit expression of the phase-space integral L̃(N) is (Fig. 5)

L̃(N)(p1 , p2 , . . . , pN) =

∫

q

N∑

i=1

δ̃(qi)
N∏

j=1
j ̸=i

1

q2j − i0 η(qj − qi)
, (33)
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En explicit result

L(1)(p1, p2, p3) =

Z

`
GF (q1)GF (q2)GF (q3)

q1 = `+ p1, q2 = `+ p1 + p2 = `, q3 = `

GF (q1) =
1

q21 �m2
1 + i0

, GF (q2) =
1

q22 �m2
2 + i0

, GF (q3) =
1

q23 �m2
3 + i0

Let us apply the Loop-Tree Duality
L(1)(p1, p2, p3) =

Z

`

e�(q1)GD(q1; q2)GD(q1; q3) first contribution

+

Z

`
GD(q2; q1)e�(q2)GD(q2; q3) second contribution

+

Z

`
GD(q3; q1)GD(q3; q2)e�(q3) third contribution

(I1)

(I2)

(I3)



En explicit result
L(1)(p1, p2, p3) =

Z

`

e�(q1)GD(q1; q2)GD(q1; q3) first contribution

+

Z

`
GD(q2; q1)e�(q2)GD(q2; q3) second contribution

+

Z

`
GD(q3; q1)GD(q3; q2)e�(q3) third contribution

(I1)

(I2)

(I3)

e�(q1) =
�(`0 � (�p1,0 +

p
(`+ p1)2 +m2

1))

2
p

(`+ p1)2 +m2
1)

,

e�(q2) =
�(`0 � (�p1,0 � p2,0 +

p
(`+ p1 + p2)2 +m2

2))

2
p

(`+ p1 + p2)2 +m2
2)

,

e�(q3) =
�(`0 �

q
`2 +m2

3)

2
q

`2 +m2
3

I3 = �
Z

`

1

2p1,0

q
`2 +m2

3 + 2` · p1 �m2
1 +m2

3 + p21 � i0⌘k13

· 1

2
q
`2 +m2

3

·

1

2(p1,0 + p2,0)
q

`2 +m2
3 + 2` · (p1 + p2) + (p1 + p2)2 �m2

2 +m2
3 � i0⌘k23



The method in few words


• The Loop-Tree Duality is a Feynman integral transformation that 
maps loop integrals to a sum of phase-space (tree-) integrals. 

• This transformation is achieved by performing the integration over the 
energy component of the loop integral. The resulting integration runs 
only over the three-momentum and is very similar to the real radiation 
corrections. Thus it encourages the idea of combination of the two, 
treating them simultaneously in a common Monte Carlo event 
generator. 

• To do the integration over the energy component, one takes residues, 
one for each propagator. That leaves a sum of N contributions. 

• Each summand is called Dual contribution and is constructed 
according to a special pattern: One of the internal lines gets cut, i.e. it 
is replaced by a Dual delta function, while all the other (non-cut) 
Feynman propagators are promoted to Dual propagators. This 
procedure is repeated for every internal line once and the results are 
added together yielding the Dual integral. 



The implementation in C++ and 
Mathematica

• We have a fast C++ code implementation as well as a Mathematica one that 
uses the Tree-Loop Duality method to carry out one of the four integrations 
whereas different integration routines are used to perform the remaining three 
integrations. 


• If there are still singularities on the real axes of the three momenta, the 
integration is carried out after a proper contour deformation such that the 
singularities on the real axes are avoided. 


• The code, as it stands at the moment, can handle in principle any multi-leg 
diagram but it is only tested for diagrams with up to nine external particles. The 
ongoing optimization work is directed towards speed and improvement of the 
user interface,


• Apart from scalar integral, the code handles with no big additional effort tensor 
integrals as well.


• The progress from different Groups so far is impressive and it is expected that 
it will continue.



Octagons

TENSOR OCTAGON 
numerator = l.p2 x l.p4 
p1 = (-2.500000,  0,          0,         -2.500000)       
p2 = (-2.500000,  0,          0,          2.500000) 
p3 = (-0.427656,  0.041109,  -0.180818,   0.385362) 
p4 = (-0.907144,  0.289299,   0.859318,   2.805929)     
p5 = (-0.414246,  0.329547,   0.249476,  -0.027570)     
p6 = (-1.907351, -0.950926,  -1.460214,   0.775566) 
p7 = (-0.271157,  0.155665,   0.039639,  -0.218456) 
p8 = - p1 - p2 - p3 - p4 - p5 - p6 - p7 

m1 = m2 = m3 = m4 = m5 = m6 = m7 = m8 = 4.506760 

LTD: REAL = -3.774487 10-10 +/- 3.396473 10-14 
LTD: IMAG =  2.827604 10-9  +/- 3.393935 10-14

SCALAR OCTAGON 
numerator = 1 
p1 = (-2.500000,  0,          0,         -2.500000)       
p2 = (-2.500000,  0,          0,          2.500000) 
p3 = (-0.427656,  0.041109,  -0.180818,   0.385362) 
p4 = (-0.907144,  0.289299,   0.859318,   2.805929)     
p5 = (-0.414246,  0.329547,   0.249476,  -0.027570)     
p6 = (-1.907351, -0.950926,  -1.460214,   0.775566) 
p7 = (-0.271157,  0.155665,   0.039639,  -0.218456) 
p8 = - p1 - p2 - p3 - p4 - p5 - p6 - p7 

m1 = m2 = m3 = m4 = m5 = m6 = m7 = m8 = 4.506760 

LTD: REAL = -2.079457 10-11 +/- 6.283601 10-15 
LTD: IMAG =  9.439531 10-11  +/- 6.273917 10-15



Octagons
SCALAR OCTAGON - ALL MASSES DIFFERENT 

numerator = 1 
p1 = (-2.500000,  0,          0,         -2.500000)       
p2 = (-2.500000,  0,          0,          2.500000) 
p3 = (-0.427656,  0.041109,  -0.180818,   0.385362) 
p4 = (-0.907144,  0.289299,   0.859318,   2.805929)     
p5 = (-0.414246,  0.329547,   0.249476,  -0.027570)     
p6 = (-1.907351, -0.950926,  -1.460214,   0.775566) 
p7 = (-0.271157,  0.155665,   0.039639,  -0.218456) 
p8 = - p1 - p2 - p3 - p4 - p5 - p6 - p7 

m1 = 4.506760 
m2 = 2.814908 
m3 = 1.427626 
m4 = 7.621541 
m5 = 5.269166 
m6 = 3.521039 
m7 = 5.888145 
m8 = 4.422515 

LTD: REAL = 6.826303 10-10  +/- 3.731196 10-13 
LTD: IMAG = 9.173787 10-10  +/- 3.701180 10-13



Outlook

• Automated code for NLO calculations in C++ and Mathematica

• Extension to 2-loops

• Merge virtual and real corrections



