Search for exclusive top quark pair production at the LHC

Summer Internship

Supervisors: Beatriz Ribeiro Lopes Dr. Michele Gallinaro

Miguel Nobre Guerreiro

The Top Quark

Standard Model of Elementary Particles

- Heaviest of Standard Model particles
- Produced at the LHC mainly in $t \bar{t}$ pairs

Brief Introduction

Top quark -> b-quark + W boson

[1]

We are interested in the dileptonic decaying channel

Exclusive $t \bar{t}$

- Dileptonic decaying channel
- Photon-photon interaction
- Missing transverse energy (met) due to neutrinos
- Protons preserved and detected by the PPS (allow the kinematic reconstruction even with met)

PPS Detector

(Precision Proton Spectometer)

- LHC magnets bend scattered protons outside of the beam envelope
- Roman Pots placed a few mm from the beamline
- Detect protons at about $\pm 200 \mathrm{~m}$ of the IP (positive and negative sides)

$$
\vec{F}=q(\vec{v} \times \vec{B})
$$

Central Selection

Require for leptons:

- ≥ 2
- $|\eta| \leq 2.5$
- $\mathrm{p}_{\mathrm{T}} \geq 13 \mathrm{GeV}$

Require for jets:

- ≥ 1
- $\geq 1 \mathrm{~b}$-jet

Main Background

Inclusive $t \bar{t}$

Drell-Yan

Kinematic Analysis

- Monte Carlo samples from 2017
- Inclusive $t \bar{t}$
- Drell-Yan
- Exclusive $t \bar{t}$

Tools for multivariable analysis on real data

- $\sqrt{s}=13 \mathrm{TeV}$

CMS

Central Detector

Inc ttbar (red), DY (blue) and Exc ttbar (black) Number of jets

Inc ttbar (red) and DY (blue) and Exc ttbar (black) Lepton-Lepton Invariant Mass

Inc ttbar (red), DY (blue) and Exc ttbar (black) Missing Transverse Energy

Inc ttbar (red), DY (blue) and Exc ttbar (black) Lepton-Lepton Angular Difference (Transverse Plane)

PPS - Roman Pots

Forward Tracks IN PPS

- From each track we get the momentum loss of the proton
- Reconstruct tracks on both sides $\left(\xi_{1}\right.$ and $\left.\xi_{2}\right)$
- We can reconstruct the mass and rapidity of the system

$$
m_{R P}=\sqrt{s \xi_{1} \xi_{2}}
$$

$$
\xi=\frac{p_{i}-p_{f}}{p_{i}}
$$

for every possible combination

$$
y_{R P}=\frac{1}{2} \ln \left(\frac{\xi_{1}}{\xi_{2}}\right)
$$

check which mass and rapidity values are compatible with what we are looking for!
inc csi (red), rp123 csi (blue) and rp23 csi (black)

Lepton-Lepton Invariant Mass Vs Roman Pots Mass

Lepton-Lepton Rapidity Vs Roman Pots Rapidity

Lepton-Lepton Visible Rapidity Vs Roman Pots Rapidity

Conclusions and Future Work

- Developed skills in Root and C++
- Understood the basis of a physics analysis
- Applied a kinematic analysis to a new Monte Carlo signal sample
- Apply a MVA on real data
- Explore the correlations enhanced by PPS

Thank you!

Backup

Inc ttbar (red), DY (blue and Exc ttbar (black) Lepton-Lepton deltaR

Inc ttbar (red), DY (blue) and Exc ttbar (black) lb-system Invariant Mass

Inc ttbar (red), DY (blue) and Exc ttbar (black) Number of b-jets

Inc ttbar (red) and DY (blue) and Exc ttbar (black) Number of Extra Jets

inc (red), rp123 (blue) and rp23 (black) Number of protons

Inc ttbar (red), DY (blue) and Exc ttbar (black) Jets Pseudo-Rapidity (for Jets 1

Inc ttbar (red), DY (blue) and Exc ttbar (black) Jets Pseudo-Rapidity (for Jets 2)

Inc ttbar (red), DY (blue) and Exc ttbar (black) Jets Pseudo-Rapidity (for Jets 3)

