Quark-Gluon Plasma

B mesons as novel probes of QGP

Alexandra Pardal, João Gonçalves

Supervisors Júlia Silva, Nuno Leonardo 5 September 2019

Ciências ULisboa

Quarks

- Quarks do not stay alone
- They tend to join other quarks and form hadrons
- This is called **hadronization** and it happens due to the strong nuclear interaction

QGP

- Quantum chromodynamis (QCD) predicts that under extreme conditions of temperature and/or density the Quark-Gluon Plasma (QGP) is formed.
- **QGP** is a state of matter formed by deconfined quarks and gluons
- Heavy ion collisions like Pb-Pb allow us to recreate the QGP

B mesons in Pb-Pb collisions

- In p-p collisions ("vacuum"), b quarks hadronise into B hadrons, e.g. B⁺(bu), B_s(bs), B_c(bc), ...
- What if hadronization happens in a QGP medium?
- Our goal is to measure the cross-section of B mesons in Pb-Pb collisions and study how the QGP affects hadronization
- CMS is the only experiment in which B mesons have been reconstructed through their full decays

Detector

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-08 20:48:06.756040 GMT Run / Event / LS: 326382 / 309207 / 7

Data, MC samples, and signal selection

- Data: **Pb-Pb collisions** collected by CMS
 - last LHC run (November 2018)
 - luminosity = 1.5 nb^{-1}
 - centre of mass energy = 5.02 TeV
- MC simulated by Pythia + Geant
- Signal selection
 - pre-selection: baseline muon and track kinematics and quality
 - BDT discriminant optimized with additional event variables: e.g. vertex fit probability, pointing angle, decay length, impact parameter

Alexandra Pardal & João Gonçalves

B production

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

B production

• Cross-section:

$$\sigma = \frac{N}{\mathcal{EABL}}$$

- Signal yield N
 - from data
- Efficiency E and acceptance A
 from MC simulation
- Branching fraction B
 from PDG
- Luminosity L

Because we use MC (**A** and **E**), it is critical to **validate** it: i.e. to ensure that MC correctly describes the data.

B signal extraction, N

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

B signal extraction

- Signal yield **N** extracted by fitting the data
- Extended unbinned maximum likelihood fit (RooFit)
 - Signal model: sum of 2 gaussians
 - Combinatorial background model: exponential

$$L(m) = N_S(\alpha \cdot G(\sigma_1, \mu) + (1 - \alpha) \cdot G(\sigma_2, \mu)) + N_{CB}(Exp(\lambda))$$

$$\mathscr{L}(N, \overrightarrow{\lambda}) = \frac{e^{-N} N^{N_{obs}}}{N_{obs}!} \times \prod_{i=1}^{N_{obs}} L(\overrightarrow{m_i}, \overrightarrow{\lambda})$$

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

B_s signal extraction

$$N_{S}(\alpha . G(\sigma_{1}, \mu) + (1 - \alpha) . G(\sigma_{2}, \mu)) + N_{CB}(Exp(\lambda)) +$$

B⁺ signal extraction

 $N_{S}(\alpha \cdot G(\sigma_{1},\mu) + (1-\alpha) \cdot G(\sigma_{2},\mu))$

 $+N_{erf}(Erf(sh,sc))+$

 $N_{jpp}(fixed)$

 $B_S^0 \to J/\psi \ K^+ K^-$

Fit validation

- To validate the fit (i.e. verify its ability to correctly extract the parameters).
- We generate 5000 toy MCs (events being generated following the fit's PDF), fit them and retrieve their input parameters.

pull distribution: should be a gaussian curve with mean = 0 and sigma = 1

$$Pull = \frac{N_i - N_{mean}}{\sigma}$$

Quark Gluon Plasma

Differential yield and systematics B⁺ meson

- We repeat the fit by splitting the data in pT bins.
- We evaluate the systematic uncertainty by pdf variation, varying:
 - signal pdf
 - background pdf
 - fit range

Bins (GeV)	p_T	N _{signal}	Statistical error	Systematic uncertainty
		0	(+/-)	(+/-)
5-7	6.70422	6.35808	3.23988	0.574439
7-10	8.80085	37.4122	3.96142	1.23235
10-15	12.3866	74.0124	4.01438	3.54562
15-20	17.3456	51.6057	3.2833	4.43056
20-30	23.8173	25.117	1.6365	2.33201
30-50	36.2883	5.06199	0.507416	0.0324111
50-100	53.3649	0.152899	0.0543959	0.186233

Differential yield and systematics B_s meson

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

Efficiency, **E**

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

Efficiency

• Efficiency measures the amount of lost signal

 $\epsilon = \frac{\text{events with cuts}}{\text{events without cuts}}$

- Determined from MC simulation -> so it is crucial to validate signal MC against data
- For that we must remove background from data implemented 2 methods:
 - Sideband subtraction
 - SPlot

Note: variable V assumed to be independent from mass

Sideband subtraction results

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

SPlot method

- SPlot method is likelihood based.
- Each event has two weights (extracted from likelihood):
 - 1. Probability of belonging to the signal, W_s
 - 2. Probability of belonging to the background, W_B

22

SPlot results

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

Comparison: sideband vs splot vs mc

- SPlot is more robust than sideband subtraction because it uses information from a full likelihood fit
- MC is reasonably similar to the data
- However...

Efficiency systematics

 Effect of disagreement between MC and data on our results is quantified by efficiency systematic error

Efficiency systematics	р _т (GeV)	Rel. Error (%)
	5-7	0.01
0.04	7-10	5.31
0.03	10-15	-1.34
0.02	15-20	0.37
	20-30	0.02
o	30-50	-0.10
	50-100	1.28
-0.02	 [GeV]	
Alexandra Pardal & João Gonçalves Quark Gluon Pla	asma	04/09/19 20

Cross-section

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

Cross-section B⁺ meson

Bin (GeV)	X-section (nb/GeV)	Systematic uncertainty (+/-)	Statistical error (+/-)
5-10	1.23297e+17	9.18916e+15	1.3736e+16
10-15	2.37764e+16	3.64892e+16	1.28976e+15
15-20	5.85321e+15	9.54505e+14	3.72444e+14
20-50	7.2012e+14	5.97817e+13	3.93007e+13

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

Cross-section

B_s meson

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

Conclusions

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

Conclusions

- We have explored B mesons as novel probes of the QGP with CMS
- B_s meson observed for the first time ever in heavy ion data
- Performed detailed study of MC validation by extracting signal from data

 implemented the sideband-subtraction and sPlot methods
- Measured differential production cross-sections for B_s and B⁺ mesons in Pb-Pb collisions at 5.02 TeV
- Dominant uncertainties:
 - B_s: affected by reduced statistics (more data required from LHC to improve results)
 - B⁺: affected by discrepancies between data and MC

Possible next steps

- Continue contributing to ongoing CMS analysis.
- 1) Solve instabilities found for certain pT bins (Bs).
- 2) Probe strangeness enhancement and hadronization:
 - i. Calculate the ratio between the Bs and B+ cross-sections in Pb-Pb collisions
- 3) Probe energy loss in the QGP medium:
 - i. Measure the production of B mesons also in p-p collisions
 - ii. Calculate the nuclear modification factor (RAA)

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{N_{AA}}{N_{pp}}$$

Alexandra Pardal & João Gonçalves

Quark Gluon Plasma

• In order to plot the fit we used the extended unbinned maximum likelihood: (*S*: signal; *G*: gaussian; *CB*: combinatorial background; erf: error function; sh: shift; sc: scale; jpp: $J/\psi \pi$ component;)

$$\begin{split} L(m) &= N_{S} \Big(\alpha . G(\sigma_{1}, \mu) + (1 - \alpha) . G(\sigma_{2}, \mu) \Big) + \\ N_{CB} \Big(Exp(\lambda) \Big) + N_{erf} \Big(Erf(sh, sc) \Big) + N_{jpp}(fixed) \\ \mathbb{B}^{+} \\ L(m) &= N_{S} \Big(\alpha . G(\sigma_{1}, \mu) + (1 - \alpha) . G(\sigma_{2}, \mu) \Big) + N_{CB} \Big(Exp(\lambda) \Big) \\ \mathscr{L}(N, \overrightarrow{\lambda}) &= \frac{e^{-N} N^{N_{obs}}}{N_{obs}!} \times \prod_{i=1}^{N_{obs}} L(\overrightarrow{m_{i}}, \overrightarrow{\lambda}) \\ \end{split}$$

Poisson parameter

N: number of expected events (sum of N's); N_{obs} : number of observed events (= N_s); *L*: total PDF; $\overrightarrow{m_i}$: vector of invariant mass; $\overrightarrow{\lambda}$: vector of parameters to be estimated (σ_1 , μ , λ , etc.)

B+ signal extraction Fit validation – Systematic error

- The formula for the systematic error of the fit is:
 - ε = (pull distribution mean) x (signal yield sigma)
- Using the values from the fit and the fit validation, we get:
- ε = 0.1089 x 50 = 5.445
- This value corresponds approximately to the difference between the fit mean and the parameter distribution mean:

1059- 1052 = 7

Rapidity

-

y - rapidity
$$\left(y = \frac{1}{2} \ln \left(\frac{E - p_z}{E + p_z}\right)\right)$$