High-precision timing detectors for HL-LHC

summer internship ID #64 Jul-Sep 2019 @ Tagus LIP

scientific advisor:

Niknejad,T.

trainees:

Cardoso,V.

Vília, G.

High-luminosity HL-LHC challenge

- > HL-LHC targeted luminosity for CMS in phase-2 upgrade is (5-7.5)x10³⁴ Hz/cm² (140-200 pileup events)
- This can degrade the identification and the reconstruction of the interaction

High-luminosity HL-LHC challenge

- Exploit the time spread of collision vertices to provide extra separation power against pileup collisions
- Time resolution of 30-50 ps for charge particles throughout the HL-LHC can be achieved with thin, large area and cost-effective detectors

BTL – Barrel Timing Layer

Design of the CMS Mip Timing Detector (MTD)

Sensors:

- LYSO:Ce scintillator crystal bars (~3x3x57 mm²)
- SiPM readout (double ended readout)
- ➢ 332k channels

Readout electronics:

- ➢ TOFHiR ASIC
 - analog processing and digitization of SiPM signals

High-precision timing detectors

Pulse Height Comparison

nPe	Simulated Pulse Height (mV)	Measured Pulse Height (mV)	Optical Atenuators
100	9.68	8.75	NE20A+0.9
200	20.14	20.00	NE20A+0.6
300	28.79	31.25	NE20A+0.3+0.15
400	37.99	35.25	NE20A+0.4
500	48.18	45.25	NE20A+0.3
600	57.12	52.5	ND1+0.9+0.6+0.15
700	66.15	69.5	ND1+0.9+0.4+0.15
800	75.75	76.5	ND1+0.6+0.4+0.3+0.15
900	85.00	83.25	ND1+0.9+0.6
1000	95.05	102.5	NE20A

SiPM Direct Output: Simulation vs Measurement

- Comparing pulse shapes in simulation and measurement at the direct output of SiPM to estimate the number of photo-electrons
- ➢ Temperature is set to 18 ℃
- Laser pulse width 50ps
- Scan a range of number of p.e. (200-1000 with)

TWEPP 2019

Tahereh

TWEPP 2019

Threshold Scan

- ➢ SiPM type: HDR2
 - OV: 4.99 V
- ➤ Laser shine at both SiPMs
 - Operation modes:
 - 2 SiPMs are connected to 1 TOFHiR test board
 - Trigger the laser through FPGA at (100kHz)
 - Temp : 18°C
- > LYSO/SiPM pulse is ~ 10 k p.e.
 - Best threshold for timing 5-10 p.e.
 - 1 p.e. ~(10mV)

Number of photo-electron scan

- > SiPM type:
 - HDR2
 - 0V: 4.99 V
- ➤ Laser shine at both SiPMs
- > Operation modes:
 - 2 SiPMs are connected to 1 TOFHiR test board
 - Trigger the laser through FPGA at (100kHz)
 - Temp: 18°C
- $\succ \sigma_{time1-time2}^2 = \sigma_{time1}^2 + \sigma_{time2}^2$

TWEPP 2019

9

Frequency Scan

- ➢ SiPM type
 - HDR2
 - OV: 4.99 V, corresponds to the gain of 5e5
- Laser shine at both SiPMs:
 - ~ 1000 p.e. per pulse on average
- > Operation modes:
 - 2 SiPMs are connected to 1 TOFHiR test board
 - Temp : 18°C
- Threshold in DAC unit set to 63 (139 mV over the baseline)

10

Summary and Conclusions

- Estimation of number of p.e. with laser pulses and attenuators based on simulation results
- > Time resolution of laser pulse with BTL SiPMs has been measured at low thresholds
 - laser pulse 1 k p.e. (~10k p.e. LYSO pulse): 19 ps
 - laser pulse 200 p.e. (~2k p.e. LYSO pulse): 43 ps
- > Time resolution is stable with frequency (up to 700 KHz)

Questions?