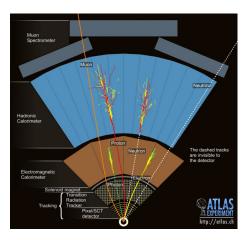
Performance of the ATLAS Trigger for the High Luminosity LHC era

Filipe Cruz

Supervisors: Ana Luísa de Carvalho Ricardo Gonçalo Patrícia Conde


LIP Summer Student Program

September 5, 2019

Final Workshop

ATLAS Experiment in LHC

Sections of ATLAS

Tracking Chamber:

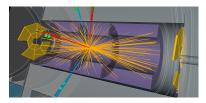
- Detects charged particles
- Particles exit the detector with same energy

EM and Hadronic calorimeters:

- Measure the energy of particles
- Absorbs the full energy of e^+ , e^- , γ and hadrons

Magnet System:

 Bends the trajectories of charged particles


High Luminosity LHC era

Trigger System

It is not possible to select all data for offline analysis.

To reduce the flow of data, ATLAS uses two-level online selection system:

- Level-1 hardware trigger
- High Level Trigger (HLT) CPU farm

Update of Trigger System HL-LHC aims to provide an increase in instantaneous luminosity by a factor of 5-7.

- It increases the discovery potential
- But also increase pile-up of events μ

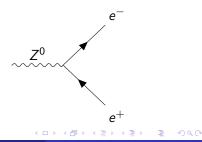
Upgrade of the Trigger System with a hardware tracking pre-processor - the **Hardware Track Trigger** (HTT)

Theory and Objectives of the internship

Decay of Z boson

Z bosons are produced from proton-proton interactions.

 $m_Z = 91.2 \text{ GeV}/\text{c}^2$

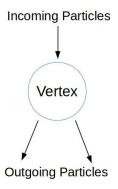

- Z boson decays to:
 - Quark-antiquark (70%) identified as jets.
 - Neutrino-antineutrino (20%) - untouched by the detector
 - Lepton-antilepton (10%) electron, muon, tau

Jets are responsible for the background.

Objectives:

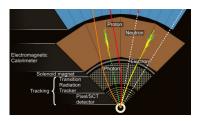
Study the performance of the future HTT:

- At selecting the signal (Z → ee), with the resolution of parameters
- At rejecting background, with different Δz cuts


Cruz, F. (LIP)

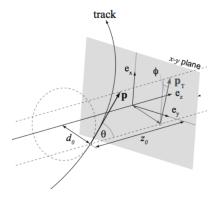
Final Workshop

Methodology


Using simulated data and a start-up code:¹

 Get electron truth particles originated from Z boson.

¹made by Lewis Wilkins, RHUL


- Apply parameterized efficiency of the detector
- Associate tracks to truth particles
 - Considers a close track with highest momentum
- Match EM clusters to tracks
 - Rejects clusters not candidates for the electrons

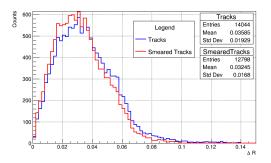
Perigee

Perigee Parameters:

 $d_0, z_0, \theta, \phi, q/p$

http://physik.uibk.ac.at/hephy/theses/diss_as.pdf

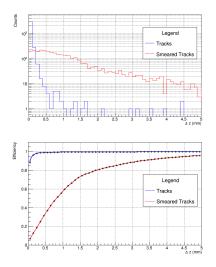
Smeared Parameters


 p_T - Tranverse momentum $\eta = -\ln \left[\tan \left(\frac{\theta}{2} \right) \right]$ - pseudorapidity ϕ_0 - Azimutal angle on x-y plane z_0 - distance in z axis to point of reference

- Apply smearing to tracks parameters and associate clusters to new tracks.
 - Gaussian distribution
 - Recurring to specific smearing functions¹
- O Calculate intended variables

Image: Image:

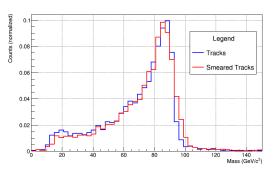
adescribe how the gaussian parameters change vs p_T and η


Control test

Minimum ΔR (between clusters and tracks) for offline tracks and HTT tracks:

Calculated by:

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$



Efficiency as a function of Δz cut is significantly smaller for HTT tracks than for offline tracks.

 Δz cut for pile-up rejection needs to be more loose in trigger than in offline analysis.

η range	η		z0(mm)
$0.1 < \eta < 0.3$	0.004	0.003	2.9
$0.7 < \eta < 0.9$	0.004	0.003	4.5
$1.2 < \eta < 1.4$			19.3
$2.0 < \eta < 2.2$	0.014	0.012	22.1

Invariant mass of the parent Z boson of the par electron-positron:

Mass obtained using track values by expression:

$$m_Z = \sqrt{(E_1 + E_2)^2 - (\overrightarrow{p_1} + \overrightarrow{p_2})^2}$$

- Loss of energy of electrons (by *Bremsstrahlung*) leads to the asymmetry of the calculated mass
- Wider gaussian for the smeared tracks

- Loss of efficiency for HTT tracks due to poorer resolution
- The invariant mass of the Z boson can be used as control for the HTT algorithm

Future steps

- Study of efficiency with pileup values for a given Δz value
- Continuation of the background rejection study