Machine learning to improve the Higgs to b-quark analysis in ATLAS

Dmytro Ostapchuk

Importance of the problem for particle physics

The Higgs decaying to b-quark pairs finally observed last year

- Main decay mode (BR = 58%)
- Observation of the high momentum decays important
 - To probe the SM predictions
 - Search for new physics
 - Most sensitive region!!

The main problem: backgrounds!!

Fig.1 Signal, $\sigma = 1.37$ pb

Fig.3 W+Jets, σ = 1976.5 pb

Fig.4 WW, σ = 50.64 pb

Fig.5 WZ, σ = 11.413 pb

ng.5 W Bets, 6 – 1576.5 pb

Fig.6 top pair, $\sigma = 452.36$ pb

Project goals

- ➢ Goals
 - Use a NN to optimize the separation between the signal and the different backgrounds
 - Find the best set of hyperparameters to achieve the best performance

Task

- Develop two NN's classifiers:
 - Binary classification (Sig vs Bkg)
 - Multiclass classification (Sig vs Bkg1 vs ... vs Bkg5) for signal study and background control

Data

 Samples produced via Monte Carlo generator (full ATLAS simulation) with several background channels (W+jets, single top, tt, WlvZqq, WqqWlv)

FNN - Architecture

> Architecture:

• Connections between the nodes do not form a cycle

 The information moves only one direction , forward (from the input nodes, through the hidden nodes and to the output nodes)

Feedforward NN (FNN) - Neuron

Each neuron:

- Is a function that takes all the previous neuron's output as inputs
- Applies a factor (weight) to each input
- Applies the sum to its activation function
- Resulting into one output

Input Variables

53 preprocessed input variables:

- standardize features by removing the mean and scaling to unit variance
- principal component analysis (PCA):
 - Linear dimensionality reduction of the data to project it to a lower dimensional space

FNN - Training

- > Minimizing the loss function
 - Binary cross entropy

$$L(y, \hat{y}) = -\frac{1}{N} \sum_{i=0}^{N} y_i * log(\hat{y}_i) + (1 - y_i) * log(1 - \hat{y}_i)$$

(\hat{y} is the NN's output and y the label)

$$w_i' = w_i + \lambda \frac{dL}{dw_i}$$

0.4

0.6

predicted probability

0.8

1.0

Log Loss when true label = 1

10

log loss

0.0

0.2

Method

- 1. Try an architecture
 - Adapt learning rate
 - Adapt weight initializer and activation function
 - Repeat
- 2. Checks
 - Take most promising models
 - Check overtraining (training vs test samples)
 - Average (Statistical fluctuations)
 - Run same configuration x5
- Compare models' AUCs and Cohen's Kappa
 - Compare the highest values
 - Check if AUC is higher in desired region or not

Results - Models

Model	Accuracy TEST	Loss TEST	ROC AUC TEST	Cohen's Kappa	Fraction	Lerning Rate	Epocs	Neuron-Layers	Activation	Weight Initializer
1	0.8696	1.5817E-06	0.9419	0.7085	0.3	0.01	28	53 71 71 71 1	relu	he_normal
2	0.8692	1.5860E-06	0.9417	0.7076	0.3	0.01	28	53 71 71 71 71 1	relu	he_normal
3	0.8709	1.5942E-06	0.9413	0.7118	0.3	0.01	28	53 71 71 71 71 71 71 1	relu	he_normal
4	0.8684	1.5815E-06	0.9419	0.7051	0.3	0.01	30	53 71 51 41 31 21 11 1	relu	he_normal
5	0.8712	1.5552E-06	0.9429	0.7122	0.3	0.01	39	53 71 51 41 31 21 11 1	selu	lecun_normal
6	0.8680	1.5780E-06	0.9422	0.7038	0.3	0.01	28	53 71 71 71 71 71 71 1	relu	he_normal
28	0.8717	1.1650E-06	0.9430	0.7123	0.4	0.01	33	53 71 71 71 71 71 71 1	relu	he_normal

Multiclass classifier

- Classify the events in six categories:
 - Signal
 - W+jets, ttbar, single top, WW, WZ
- Optimized the NN parameters in the same way as before
- Confusion matrix almost diagonal: the NN identifies the different classes
- Higher confusion in separating
 - Single top from ttbar
 - WW from WZ
 - Very similar processes!!
- The results suggest that three background categories would be better

Conclusions

Developed and optimized ML algorithm to separate high momentum Higgs to bb decays from background

Achieved accuracy ~ 87 %

Best model overall is the model 28:

- Activation for hidden layers: ReLu
- Weight initializer: he_normal
- Adaptive Learning Rate with decay rate = 0.1

> Went further to identify the different backgrounds with multiclass NN

Achieved accuracy ~ 65 %

> Multiclass output suggests to group background in 3 categories only

Next steps

> Compare signal significance between binary classifier and multiclass model

Backup Slides

ROC - AUC

ROC curve (receiver operating characteristic curve)

$$TPR = \frac{TP}{TP+FN}$$
 $FPR = \frac{FP}{FP+TN}$

- ➤AUC (Area Under the ROC Curve)
 - measure of performance across all possible classification thresholds

Cohen's kappa

- Measure of agreement between the two individuals (NN's predictions and true labels)
 - p_0 observed level of agreement
 - p_e the value that you would expect if the raters were totally

independent

Agreement	Value for Kappa
Poor	Less then 0.20
Fair	0.20 to 0.40
Moderate	0.40 to 0.60
Good	0.60 to 0.80
Very good	0.80 to 1.00

			Rater #1	
		1	2	Total
	1	p ₁₁	p ₁₂	p _{1.}
Rater #2	2	p ₂₁	p ₂₂	р _{2.}
	Total	p.1	p.2	1

 $p_o = p_{11} + p_{22}$

 $p_{e} = p_{\cdot 1} p_{1} + p_{\cdot 2} p_{2}$

Conclusions

- New NN architectures (N layers, M nodes) were developed to separate signal from background with
 - Different activation functions
 - Different (Weight Initializer)
- In doing so, the search was guided by two criteria:
 - Performance: checked by Cohen's Kappa, AUC and ROC curve
 - Validity: checked by over training test
- Best model overall is the model 28:
 - Activation for hidden layers: ReLu
 - Weight initializer: he_normal
 - Adaptive Learning Rate with decay rate = 0.1