Selection of Helium nuclei using multivariate data analysis in AMS

> José Jesus David Lima LIP Lisboa, Portugal 04/09/2019

Summer Internships

Alpha Magnetic Spectrometer

Data Organization

Exploring an event

p :

TRD TOF

TRACKER

p

Exploring an event

Exploring an event

Selection of data

Simple selection of data is not good enough. More advanced analysis is required

Multivariable Analysis

In order to separate the Isotopes, solutions involving multivariable classification and machine learning are required.

This way, Toolkit for Multivariable Analysis with ROOT (TMVA) was integrated in the project

Monte Carlo Data

Events made purely of Helium-3 and Helium-4 Necessary for the training of the TMVA

Monte Carlo Data

Using the Helium-3 as signal and the Helium-4 as background, it is now possible to train the TMVA methods

Selecting Variables

Combinations of these variables achieved the best results which shows the machine's capacity of identifying a separation between the isotopes. Contrary to first thoughts, including the calculated mass did not improved the results

The Results - MLP

Results obtained after using the classifier over the Monte Carlo Data

The Results - MLP

The Results - BDT

Results obtained after using the classifier over the Monte Carlo Data

The Results - BDT

The Results

BDT	He3 %	He3 error %	He4 %	He4 error %
With charge as a variable	20.80153	0.778479	79.1948	1.44401
Without charge as a variable	16.5464	0.718013	83.4539	1.4834
MLP	He3 %	He3 error %	He4 %	He4 error %
With charge as a variable	21.493	0.781797	78.5071	1.43439
Without charge as a variable	14.7507	0.718052	85.2499	1.51242

The Results – Geomagnetic Cut

BDT	He3 %	He3 error %	He4 %	He4 error %
Without Geomagnetic Cut	16.6088	0.730373	83.3917	1.4883
With Geomagnetic Cut	16.5464	0.718013	83.4539	1.4834
MLP	He3 %	He3 error %	He4 %	He4 error %
Without Geomagnetic Cut	14.8275	0.726253	85.1726	1.51503
With charge as a variable	14.7507	0.718052	85.2499	1.51242

Questions?