Introduction to statistics

Summer internship LIP - 17/07/2019

+1.11%

Pedrame Bargassa CMS - LIP

+0.21%

+0.3

Disclaimer & Goal:

- > 30 minutes: Way too short to give a <u>course</u> on statistics
 - Covering important <u>notions</u> only, without demonstration
- Goal: Cover basic concepts that you might come across during the internship
- Courses on statistics:
 - * "Statistics for Nuclear and Particle Physicists" Pr. Louis Lyons

Outline:

- Experimental error
- Distribution & Probability / Sample of events
- Important distributions Central Theorem
- Error propagation
- > Hypothesis testing: The χ^2 example

Experimental error

<u>Any experimentally measured quantity has an uncertainty</u>

Reflecting the precision of the measure

Example: The speed of light is $c = 2.99792458 \times 10^8$ m/s A new experiment gives $c = (2.9900 \pm \sigma) \times 10^8$ m/s

- σ = 0.01: New result is consistent with previous result
- σ = 0.001: New result is inconsistent with previous result
 - > Either: We have made a new discovery
 - > Or: Either the new value or error is wrong
- > $\sigma = 1.0$: The new result is irrelevant

Experimental error

- 2 types of experimental errors:
- Random/Statistical: Inability to measure w infinite accuracy
 - > Opinion polls, counting radioactive decays
- Systematic: "In the nature of our measure": Often points to mis-calibration of device, mis-calibration that we must measure & include in our final result
 - <u>We know</u> that 100 atoms of Cesium decayed. <u>We measure</u> only 98 decay products: Systematic uncertainty of 2% specific to measuring device

Distribution & Probability

<u>Distribution n(x)</u>: Describes how often a value of the variable x occurs in a definite sample of Data

<u>x variable</u>	<u>n(x)</u>
Number of days in 1 week	N(S
Energy states of H atom	N(A
Hours to understand stats	N(P
	Number of days in 1 week Energy states of H atom

<u>n(x)</u> N(Sunny days) N(Atoms w electrons w E=x @ 10K) N(Person having understood after x hours)

<u>Probability p(x)</u>: That with sample of N measurements, the value x is obtained n_x times

 $p(x) = \lim_{N \to \infty} (n_x/N) \qquad p(x) \in [0,1]$

Distributions/Probabilities are characterized mainly by 2 quantities: **Mean/Expectation value**: $E(x) = \int x p(x) dx$ **Variance**: $\sigma^2(x) = \int (x - E(x))^2 p(x) dx$

During estagio:

- Most of the time
 - > p_{T} , E, (r, ϕ , η) of a reconstructed particle
 - If you use root: "E(x)" & σ will be given to you
 - > But now you know what they correspond too :-)

Sample of events

For a set of N separate measurements of $x = \{x_1, ..., x_n\}$, how can we estimate the expectation value & variance ?

 $x = (1/N) Σ_i x(i)$: Nothing else than E(x) = ∫ x p(x) dx for a discrete case where: p(x)=p=1/N

 $\sigma^2(\mathbf{x}) = \sigma^2(\mathbf{x}) / \mathbf{N}$: Each of the measurements x has an uncertainty, but... The more measurement we will have, the preciser the mean of all measurements will be

During estagio:

- The more your sample has events, the preciser your relative precision will be
- Relative uncertainty: $r = \sigma(x) / N$
 - > Let's assume that: $\sigma(\mathbf{x}) = \sqrt{N}$ (Poisson, see next slides) Then: $r = 1/\sqrt{N}$

Important distributions

Binomial:

When we have 2 possible outcomes of the experience

Probability: of having
m success
out of n trials
with p: Probability of success
q: Probability of failure p+q=1 $p_n(m) = C_n^m p^m q^{m-n}$
 $C_n^m = n!/m!(n-m)!$ Expectation value:E(m) = n p

<u>Variance</u>:

```
\sigma^2 = n p q
```

<u>Examples</u>: Tossing a coin & looking for e.g. heads Detecting a produced particle or not: Can be used for calculating efficiency & its uncertainty

Important distributions

Poisson: When the probability of observing an event is small $\underline{Probability}: \lim_{N \to \infty} P_n(m) = \mu^m/m!$
 $\mu = Mean counted events<math>\underline{Expectation value}:$ $E(m) = \mu$ $\underline{Variance}:$ $\sigma^2 = \mu$

<u>Example</u>: Consider the very large number of radioactive nuclei. The probability that one of the nuclei decays within time interval Δt follows the Poisson distribution

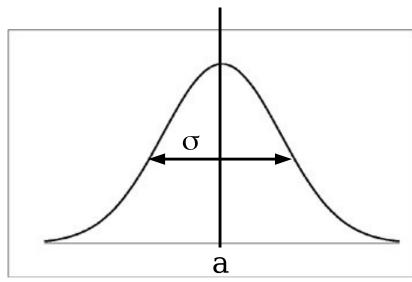
Important distributions

Gaussian:

 $\frac{\text{Distribution}}{G(x) = [1 / \sqrt{2\pi} \sigma] \exp[-(x-a)^2 / 2\sigma^2]}$

Expectation value: By definition: a

<u>Variance</u>: By definition: σ^2



<u>Example</u>: If the measure of a variable x (mean & variance) is well done, then the pull = [x(measured) – x(true) / σ] follows a gaussian of a=0 & σ =1

During estagio: You might come across this distribution/probability when, i.e. fitting the resolution of a detector

See next slide ;-)

Central limit theorem

If $x = \{x_1, ..., x_n\}$ are a set of n independent variables <u>all</u> <u>following an arbitrary distribution</u> with mean a and variance σ^2 , then in the limit $n \rightarrow \infty$, their arithmetic mean $x = (1/n) \sum_i x(i)$ follows a Gaussian distribution with mean a and variance σ^2/n

Error propagation

Imagine you are calculating an experimental quantity f which is a function of 2 numbers l & j l: <u>Counted</u> number of reconstructed leptons

j: <u>Counted</u> number of reconstructed jets

What is the uncertainty on f?

 $\sigma^{2}(\mathbf{f}) = (\delta \mathbf{f}/\delta \mathbf{l})^{2} \sigma^{2}(\mathbf{l}) + (\delta \mathbf{f}/\delta \mathbf{j})^{2} \sigma^{2}(\mathbf{j}) + 2(\delta \mathbf{f}/\delta \mathbf{l})(\delta \mathbf{f}/\delta \mathbf{j}) \operatorname{cov}(\mathbf{l},\mathbf{j})$

We are <u>counting</u>: Poisson is the uncertainty to take into account: $\sigma^2(l) = l$; $\sigma^2(j) = j$

Hypothesis testing: The χ^2 example

Imagine that we have $i \in [1,N]$ measurements $(O(i),\sigma(i))$ as a function of a variable x We want to know the best hypothesis representing these observations, i.e. the function best fitting N observed Data

Finding a function f to test isn't a problem. The real question: How can-I quantitatively test the goodness of my hypothesis ?

 $\chi^2 = \Sigma_i [(f(i) - O(i))^2 / \sigma(i)^2]$

Accounts for: Each & full observation point (O(i), σ (i)) The tested hypothesis f

If the hypothesis is reasonably good: $\forall i \quad f(i) - O(i) \sim 1 \sigma(i) \rightarrow \chi^2 / N(Degrees freedom) \sim 1$

During estagio: root does this for you but now you know what does it correspond to :-)

Closing words

Always keep in mind that any quantity you measure, whatever the method of the measure, has an uncertainty

If you have stat problems and/or there are related points you would like to discuss: Let's discuss together, with your supervisor(s) bargassa@cern.ch

Wish you an interesting internship !