LISBOA

, — 1
TECNICO &S g
0

Understanding
Neural Networks

Giles Strong
17/08/19

LIP Summer-Student Tutorials

giles.strong@outlook.com

twitter.com/Giles C Strong

Amvasnewphysics.wordpress.com

https://qgithub.com/GilesStrong

mailto:giles.strong@outlook.com
https://twitter.com/Giles_C_Strong
https://amva4newphysics.wordpress.com/
https://github.com/GilesStrong

Seminar Questions

® What are artificial neural networks?
® How do they work?
® How can we improve them?

® Why use them in the first place?

Introduction and history

ALPHAGO

++400:00:48
eCe
O O
@ f ’
O O
®oHo

AlphaGo

Google DeepMind

LEE SEDOL

« 00:017:00

fire engine | dead-man’s-fingers

,a PEIrS0OTI

helmet

motorcycle

Mark | Perceptron
— Rosenblatt, 1957

® First machine to run the single-layer perceptron
algorithm

0 otherwise

® Weights (w) set using potentiometers

® Used for image recognition, but didn't live up to
expectations; couldn't learn properly

ADALINE and MADALINE
- Widrow and Hoff 1960

Teacher

® (Multi-layer) perceptron machine

® Still hardware-based y

® Used a slightly more advanced algorithm to learn the
correct weights i

till failed to perform as well as expected

Back propagation — 1960-1986

® Weight-learning based on chain-rule differentiation

® Basics, Kelley 19060 and Bryson 1962

® First applied to ANNs in 1082 by Werbos

® Shown to be useful in multi-layer ANNs by Rumelhart, Hinton, and Williams in
1986

® However, ANNs still underperformed, and were limited in size; training would get
stuck

® Interest in ANNs diminishes 20

https://arc.aiaa.org/doi/abs/10.2514/8.5282?journalCode=arsj
http://werbos.com/Neural/SensitivityIFIPSeptember1981.pdf
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0

Neural Network Renaissance - 2006

® Hinton and Salakhutdinov develop a layer-by-layer pre-training method

® Allowed backpropagation to work for deep neural-networks

® In 2010 deep neural-networks begin outperforming other methods in speech
recognition [Acero, Dahl, Deng, and Yu, 2010]

® Reinvigorated research in NNs

https://www.cs.toronto.edu/~hinton/science.pdf
https://ieeexplore.ieee.org/document/5740583/

Overview

Example

Example

® Say we want to predict the

class (orange or blue) of points
according to their position

® We want to draw decision

boundaries in our feature
space

13

Overview of a neural network

FEATURES

Which properties do
you want to feed in?

X,

3|
. ,(__ 2 input features:

X andY coordinates

FEATURES

Which properties do
you want to feed in?

Overview of a neural network

-+ -—
8 neurons
: |] O e——Neuron- applies
o o g ™ mathematical
WM transformation
X];1/;
= Layer of
= €——Layer of neurons
o
D /

15

Overview of a neural network

FEATURES + — 6 HIDDEN LAYERS

Which properties do
you want to feed in?

+ - + - + - + - + - + -

8 neurons 8 neurons 8 neurons 8 neurons

9
100
]s]s]s

Add additional
layers

nfa[afn]s
N

Overview of a neural network

FEATURES

Which properties do
you want to feed in?

+
|

8

3

urons

|
|

X

X,

D % <7
\ p
o\ 7/
W\ /
W
2\
D \ l.‘
\
Y
\ \

~

\

100

DE0EREED0

afa]N]n

+ -

8 neurons

G

— 6 HIDDEN LAYERS

+ - + -
8 neurons 8 neurons
p "
\;\\ X
\‘ \ |
A\ \
“ .\ » “.
RN \\‘
= p }
N ’ |
! / v
/ \
S == b
¥
p o=
\
‘\
.\ |
4 5 1 /
v/
P e S 4

- | 2 = >
\\
pIeldt Y O
'/\1//
/' .l‘.
] ‘/
pelipd 2
]
7
\ ./
1 PFE— 3

+ - +
8 neurons 8 neurons
2 p p
/
p 4
X
!
l\\
3\ p

OUTPUT

Test loss 0.564
Training loss 0.606

on to &
- e
0
5 o oig,
> & “,
o i. « o® %0,
o & s
L "
- L2
RCRC
. . * - -
) o, Cd °
'. % o g0® A
L ,o,)
L ®e e L
‘s
. FOd
.
® o »s 0V
|}
0
Colors shows F

data, neuron and
weight values.

[J Show test data

[[] Discretize output

Output

Overview of a neural network

FEATURES + — 6 HIDDEN LAYERS OUTPUT

Which properties do Test loss 0.564

you want to feed in? g @ & & 2, & 2 g g i B & Training loss 0.606
8 neurons 8 neurons 8 neurons 8 neurons 8 neurons 8 neurons

p p p p 4

.
®tte g5 0"

Colors shows
data, neurg
} p 4 y P weight g

Iterative training process

DORRRDQ
:
:

ze output

o+
> o
Q. =
-
O 2
| —
5
(=8
5
(=]
Q
N
o -9 m.m
2 &}
: 0O
Y4 > i
r m .-. ol
= B 3
O &
s 8 5§ ¢
5 92 58 =
2 2 o o > 3
A o £ nm L=
S 35 i5 °
@ %O
t o B F £z 0O
"
e I 5
5
C :
) &
I
"
5
U 2
+8
n
C & o
> | s
< 5
5 2
Z
M =z @
(=)
U- £
7
O - 1
S
=
| 2
W e
+
e v
n — Iy =
>
_ D :
v
> -
5
o
T £
w
@ g%
@ 9=
Upm - ~ AvL AA I;A .\.JA.
E g XX e A 23
w £ 3 = =
Fwy v (]

Overview of a neural network

OUTPUT

6 HIDDEN LAYERS

-

wn
V¥]
o
B
<T
Ll
[

Deep learning

-
(=]
o
o
8 o
=
%]
g g
3 5
SRS
|
+
|
+
I
+
|
+
|
+
|
+
o ™
Dok
8%
T Qo
8o
e s
a s
ha
CW
b |
s S

v .
T IO

Colors shows

8 neurons

8 neurons

8 neurons

8 neurons

8 neurons

8 neurons

X
X
KI
X2
X, X
/<1

data, neuron and
weight values.

20

[[] Discretize output

[] show test data

sin(X,)

Main components of a neural network

1. Neurons
2. The network

3. Training

Overview

Neurons

What is a neuron?

® Quite simply, it is a mathematical transformation:
® It takes vector of inputs x

® Weights each input element

1

® Applies an activation function, e.g sigmoid: f —

| + e~ 220 Wity

® And passes its output forwards in the network

What is a neuron?

* The function applied by the neuron
can be any continuous
mathematical function of the

o
(V)

Inputs

* However there are several
‘standard’ ones which are used

* Sigmoid was a common choice L 4

24

Overview

Networks

Constructing a network

X,

I 1y
*D

$as
A
~7 | —

e
=
2N

~,
\ ,
1
N

® As seen earlier, a network is simply
many layers of neurons

=
TN
D <

N .
NS =
e
L,
. -~
=~

DDEGQ¢UH
slaIninlsl=]s]=

e
SV
e
=9 -

.
7
’ A

\ \\' & 1/ A
‘ L‘l L'l %
~ ~

Constructing a network

X
® A single neuron applies a basic '
function to the inputs
® By connecting layers of neurons ‘
together, more complex functions

can be constructed y

Constructing a network

X
® The aim is to learn a function which ' ‘:l

maps the inputs to the desired ->Z(£l71, L2
-

outputs

28

Constructing a network

® Each neuron applies the same basic X
function

® But the weights each neuron applies
can be different

® .". create the map by altering the

weights y

Overview

Optimisation

Towards training

® How do we alter the weights?

® Could test random settings, but unlikely to arrive at good settings for
anything but tiny networks

® Need to alter the weights intelligently, i.e. train the network

® To do this, we need to quantify the performance of the network

Quantifying performance - Loss

® This measure of performance is called a loss function

® It quantises the difference between the network’s prediction for a data
point, and the actual value of the data point

® Since the inputs are can be thought of has being drawn from a probability

density function, rather than an analytic function, the performance of a NN
is stochastic

® By evaluating the loss using several sets of inputs (a mini-batch) a more
eneral value may be computed &

Quantifying performance - Loss

® One example is the mean squared-error (minibatch size of N):

prediction and truth

H

N
] A .

Average over data points l Difference between

33

Quantifying performance - Loss

® For classification, the cross-entropy is better:

Average over data points Difference between

‘ prediction and truth
N w

n=1

—

1 -)
~ Ynlog yn + (1 — yp) log (1 — yn)|

Network optimisation

® Armed with a quantified measure of performance

® Our aim now is to minimise the loss function = an optimisation problem

® Lots of advanced algorithms exist: Genetic, Metropolis-Hastings, et cetera

® But the parameter space is huge! =long convergence time

35

Network optimisation

* Turns out, the gradient descent
algorithm works just fine

-
RS,
)

O
A

-
4

O

O
Y4

) -

O

=
)

(V)
Z

* We simply need to reach to bottom

* But each is about as optimal as the
of a high-dimensional bowl

* The loss function contains many
others

local minima
* We do this by moving down the

gradient

Gradient evaluation - numerical method

® Inorder to move down the slope, we first need to know the gradient of the
loss function at a given point: {/ [

® This can be estimated numerically by varying each weight in the network
by a small amount, h, and seeing how the output changes :

or h

® This works, but is time-consuming to compute: we can hundreds of
thousands of weights to evaluate! 8

What is a neuron?

* The function applied by the neuron
can be any continuous
mathematical function of the
iInputs

* However there are several
‘standard’ ones which are used

* Sigmoid was a common choice

What is a neuron?

* The function applied by the neuron

can be any&ontinuous D

mathematical function of the
iInputs

* However there are several
‘standard’ ones which are used

* Sigmoid was a common choice

Gradient evaluation - Analytical method

® Because each neuron applies a continuous function, the entire network is
differentiable

® We can compute the gradient analytically !

Enter back-propagation

Essentially, this method of analytical evaluation is a two-step process
First we do a forward pass of a data point, to evaluate the loss

Next we do a backwards pass through the network of the gradient of loss
at that parameter point

We then know exactly how the each weight affect the loss function and can
adjust them accordingly

This is called back-propagation

Back-propagation

Example

Simple example

®

@ :

Simple example

®

@ > Output

X f=xxy

Aim is to make decrease the value of g(x,y,x)
Say we have an example data point: x=3, y=-4, z=2

Let's do a forward pass through our network

>g=f+=z

46

=z Xy

.I:
@)g:f+z

f=rzxy=3x—-4=-12

.I:
@)g:f+z

-12

f
g=1[+=z
@ T - _1242=—10

-12

So for our test point, the output is -10
Now let’s back-propagate the gradient

This will tell us how we should alter the inputs in order to decrease the
output

® The output’s effect on itself, just one

09 _0(/+2) 0f(wy) 05 _
0z Oz 0z

® Input z exerts a force of 1 on the output

53

dg _O(f+2) _ Gf 0z
of Of Bf of

=1

-12

® Asdoes the value of f(x,y)

55

dg

® Now we want to evaluate the effect of xong: —Z

ox

56

dg 0O0g Of

® Let'suse the chain-rule: — = — «x —

oxr Of Oz

57

-12
.I:
2
Z
1
® Let's use the chain-rule: @ — @
oxr | Jdf

We know this already J

58

-12
f @ -10
2 1 + >J
Z 1
1
® Let's use the chain-rule: @ = @ 4 (9_]”
or |O0f | |0x

We know this already —

7

. And we can evaluate this

59

of _0(zy)

ox ox

=Y

99 09 0f _
or Of 0xr

Il xy=-—4

dg

Similarly: 8_3;

— X

af

2 X
3 12
f -10
2 + >g
1
1

So, we now know each variable’s effect on the output
Now let’s take one step down the gradient

We'll use a step size (u) of 0.1

63

Move down the gradient

New value
eI
2 |= x[—
=3 (-4

2 =7 @x
0z H

=2 (1x0.1)=19

-14.62

f
1.9 @ > -12.72
Z,

® Having updated our inputs, we find that the output has decreased by 2.72

67

X

X > X

W

X

In actual implementation we can’t change our input data
Instead we weight the incoming signals
This is just another ‘sub-neuron’

Meaning we can back-propagate the gradient into it

68

® Let's generalise and recap

69

® Let's generalise and recap

® We have a neuron in a network

70

® Let's generalise and recap
® We have a neuron in a network

® It receives inputs, applies a function, and produces an output

71

® We have a neuron in a network
® It receives inputs, applies a function, and produces an output

® These inputs come from neurons in the previous layer

72

® Itreceivesinputs, applies a function, and produces an output
® These inputs come from neurons in the previous layer

® Andthe outputs are passed to the next layer

73

These inputs come from neurons in the previous layer
And the outputs are passed to the next layer

At the same time as calculating its output, the neuron can also compute its
local gradients

74

And the outputs are passed to the next layer

At the same time as calculating its output, the neuron can also compute its
local gradients

Eventually the loss function gets computed

75

® Eventually the loss function gets computed
® The gradient of the loss eventually gets back-propagated to our neuron

® The neuron sees the effect of its output on the loss

76

oL 0L Of

E— _X_

® The neuron sees the effect of its output on the loss

® Having already calculated its local gradients, the neuron simply times this
by the incoming gradient (chain-rule)

® The new gradient propagates on to the next layer

77

Having already calculated its local gradients, the neuron simply times this
by the incoming gradient (chain-rule)

The new gradient propagates on to the next layer

Having calculated all the analytic gradients we can update the weights by
stepping down the gradient

78

Problems with neural networks

Back propagation —1960-1986

® Weight-learning based on chain-rule differentiation
® Basics, Keely 1960 and Bryson 1962
® First applied to ANNs in 1982 by Werbos

® Shown to be useful in multi-layer ANNs by Rumelhart, Hinton, and Williams in

2986 O

® However, ANNSs still underperformed, and were limited in size; training would get
stuck

® Interest in ANNs diminishes 80

Problems

® Even with back-propagation, NNs would get stuck during training

® Why did it take another 28 years for them to become useful?

Problems with neural networks

Activation function

Problem 1: Activation function

* The sigmoid function was used
because it was smooth between o
the bounds of zero and one

* Early ‘connectionist’
interpretations of NNs likened it to
the firing rate of a biological
neuron

f
-10

* But it has several problems... x

83

1
10

* When [x| is large, the local gradient
drops close to zero

* The saturated neuron effectively
passes zero loss-gradient back to
previous layers

* This stops them from updating

1: It can kill gradients during back-prop

their weights 0

Tiny gradient
1.0 - A
Large X
oL 00 OL_ OL u,

oxr Ox Oo 0o

* Qutputs are always positive

* Gradients propagated to the
weights are therefore either always
positive or always negative

* If the optimum set of weights is a
mixture of positive and negative
weights, then this can only be
reached by zigzagging towards the
optimum position

2: The outputs are not zero-centred

Weight updates

Optimum

3: Expensive to compute

The sigmoid function contains the exponential function
This requires a lot of CPU time to compute, compared to other functions
Only a slight slowdown, but a slowdown nonetheless

Especially once networks start to get large

1
1 He?

o (z) =

An improvement: tanh

1.0 -

0.5

-10

10

87

The solution

Use a rectified linear-unit as the
activation function

Introduced in 2000 by Hahnloser
etal.

Gradient never saturates in
positive region

Easy to compute

10 +

Shown to converge 6 times more ™ E

quickly than tanh; Hinton,
Krizhevsky, and Sutskever 2012

88

10

https://www.nature.com/articles/35016072
https://www.nature.com/articles/35016072
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

The solution

Still non-zero centred

Still kills gradients in negative
region

Depending on initialisation of
weights, can sometime never

activate (dead Relu) = T

89

10

Problems with neural networks

Initialisation

Problem 2: Initialisation

® How exactly do we initialise the weights in a network?
® Could set them all to the same value; they'd all respond the same way

® We need something ‘symmetry breaking’

Problem 2: Initialisation

Default was to sample a Gaussian distribution and times by some factor

If the factor were too large then the neurons would saturate (for sigmoid
and tanh); gradients go to zero, nothing trains

If the factor is too small, the output of the network becomes zero

Factor must be set carefully by hand

The solution

Mathematically sensible solution proposed by Bengio and Glorot in 2010:
Glorot initialisation

e 2
Scales the Gaussian distribution by \/Nin TN
For neurons with fewer connections, the weights are higher
For neurons with many connections, the weights are lower

Similar levels of outputs throughout the network

93

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

The solution

This was derived assuming a linear activation function
Works well for sigmoid and tanh

Doesn’t work for ReLu; results in lots of dead neurons
Instead, only the number of inputs should be considered : \g

n
He et al, 2015

94

https://arxiv.org/abs/1502.01852

Problems with neural networks

Convergence

95

Problem 3: Convergence time

Gradient descent is able to
optimise the weights

However, it can easily slow down
in narrowly sloping ‘valleys’

96
How GD moves Ildeal moves

Standard gradient descent

Current parameters _l

* Thestandard updateis: |§; | 1|: O —| 1t IVL(Htj

| I
Gradient at current
parameters

New parameters

97

Learning rate -

Solution 1: Add momentum

* Instead, allow velocity to accumulate:
* Should help move quickly down
shallow slopes

Momentum
coefficient

V1 = oot — o VL(Or)
Orr1 =0t +vp

98

Solution 1: Add momentum

sgd
momentum |]
nag \
adagrad
adadelta

rmsprop

@\\\\‘

o

60 80 100 120

Solution 2: Make momentum ‘smart’

Momentum step

* Wesaw a large speed up in Actual step
convergence with momentum

* But the method also overshot the
target

* The momentum update consists of a

momentum step, and a gradient step >

Gradient step

Solution 2: Make momentum ‘smart’

Momentum step
* Since we know we'll make the

momentum step

Let's make it first before evaluating
the gradient

Then we'll be evaluating the gradient
at the position after the momentum
step

Gradient step

Actual step

Solution 2: Make momentum ‘smart’

This one-step-lookahead allows for

reduced overshooting vpr1 = ave — VLG + avy)

Allows for quicker convergence 9t+1 — 6 + Vpa
Referred to as Nesterov momentum

Evaluate gradient after momentum step —

Solution 2: Make momentum ‘smart’

sgd
momentum |]

nag
adagrad i
- adadelta N
rmsprop §
' 3 A 5

100 120

For steep gradients we want a small
learning rate

For shallow ones, a high learning rate
Let's give each parameter its own
learning rate

And scale them according to past
gradients

ADAGRAD; Duchi, Hazan, and Singha

2011

Solution 3: Adapt the learning rate

- ()
M~ T = 2
\/‘an() VL (eian)

|

Square sum of past gradients

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

Solution 3: Adapt the learning rate

Decay rate
Over time, the learning rate will drop
to zero)
Not so good for deep networks | aj 141 = Aaj ¢+ (1 =) VL (Qi,t)
Let’s allow the store of past gradients Mo
to decay Hit+1 = G 111
Effectively keeping a moving average V—

T_ Leaking store of past

of past gradients _
gradients

RMSProp; Hinton & Tieleman, 2012

Oi 141 = 0it — Hi 11V Lo,

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Solution 3: Adapt the learning rate

sgd
momentum
nag
adagrad

- adadelta
rmsprop

ViR L, 57 .50 {V i L

3 4 5

100 120

Final step: Combine them

Both methods of adding momentum and adapting the learning rate are
seen to offer improvements

No reason why they can’t be combined

This is called ADAM; Ba & Kingma 2014

And with Nesterov momentum - NADAM; Dozat 2015

https://arxiv.org/abs/1412.6980v8
http://cs229.stanford.edu/proj2015/054_report.pdf

Improvements

Improvements - Ensembling

A single model is unlikely to be optimal for all possible inputs
By training multiple copies of the same model

Then combining their predictions

The ensembled model is likely to be more performant in a wider range of
Input regions

Effectively a guaranteed improvement!

Can experiment with different weighting schemes, combinations of
architectures, ML algorithms, et cetera

Improvements - Dropout

Slightly counter-intuitive

Involves randomly dropping

(masking) neurons per training
Iteration

Means that during that iteration,

the dropped neurons are never
used

Hinton et al, 2014

http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf

Improvements - Dropout

Prevents the network from
becoming over reliant on certain
Inputs

Forces it to generalise to the data

Effectively trains many

sub-networks, i.e. internal
ensembling

Speeds up training (fewer things
to evaluate)

Improvements - Dropout

One subtlety:

During training perhaps only half
the network is used

During application, all the network
is used

Need to scale outputs during

training to maintain similar levels
of activation in each regime

Advantages of neural networks

Advantages over other Machine Learning
methods

Direct access to nonlinear responses
Many previous ML methods have a linear response

Ensembling them (e.g. random forest; an ensemble of decision trees) could
allow for non-linear fitting

By using a nonlinear activation function, NNs can directly apply nonlinear
fitting

Advantages over other Machine Learning
methods

Advantages over other Machine Learning
methods

Test loss 0.094
Training loss 0.056

Advantages over other Machine Learning

Test loss 0.094
Training loss 0.056

predictions of GB (all 200 trees)

train loss: 0.105 test loss: 0.207

BDT

Advantages over other Machine Learning

Test loss 0.094
Training loss 0.056

predictions of GB (all 200 trees) predictions of GB (all 200 trees)

train loss: 0.105 test loss: 0.207 train loss: 0.096 test loss: 0.162

BDT BDT+rotation

Advantages over other Machine Learning
methods

:‘...O 0.\0.00 - v

R AR

T
predictions of GB (all 200 trees)

predictions of GB (all 200 trees)

train loss: 0.129 test loss: 0.275 Ll tesliinsssiEs

BDT+rotation BDT

Automated learning of powerful features

® Power of linear classifiers relies on computing appropriate features
beforehand

® These effectively warp the feature-space to make data classes be linearly
separable

Automated learning of powerful features

Data projected to R™2 (nonseparable)

1:5

TT15

°
° °
° ° |
s .:. °s ...‘o°. -
°
'. ° ..
) ° °
° o 8 .o
® :. |
L4 A, : °
° °
oie ° R : y ‘A ° .0.
Ap @
- ik
@ A M, & . i
Al A ° il
° 3 A
0 g ad '.'
ry
¢ ° ad a A + P °
oo A A ® _
°
: ° o".
0o © o 3 °e 8
e 4 ° o T
o L) L LY
° ® g0,° ~. ° il
® A e © °
-1.0 -0.5 0.0 0.5 1.0

1.5

[°qen z

Data in R 3 (separable)

14 7 ° ° I’
o ° ®
° ° . °
1'2 - [:o © o° { o(; .6@. .
L] o (-]
1 (: e R %W e = ®oq ;o
1.0 b4 8 e o = o & o %o ‘ °
vo ° e® 8, °© o %—* 'q,.o:
0.8 1 T ' |, 22
L) ° ° °
0.6 7

121

Automated learning of powerful features

HEP example might be the invariant mass of a resonance
High-level features which are nonlinear combinations of other features

For linear models, these must be calculated by hand and fed in; feature
engineering

High reliance on domain knowledge

Automated learning of powerful features

Background Rejection

I I I I T
1 —-wv"f???f::-::::,-."’"‘ —
08 - ..°‘. /
0.6 =
-------- DN lo+hi-level (AUC=0.88) Ay
0.4 LS
........ DN lo-level (AUC=0.88)
0.2 i
-------- DN hi-level (AUC=0.80)
o . —
]] | | |
0 0.2 0.4 0.6 0.8 1

_ No improvement when HL
features are added

DNN learns its own
discriminant features

"

Signal efficiency

123

Whitson, 2015

Summary

Neural networks are powerful implementations of Machine Learning
Are able to make use of high-dimensional patterns in data
Reduced feature engineering

Must be built with care

Further resources - Lecture & Courses

Fast.Al Introduction to Machine Learning for Coders

Fast.Al Practical Deep Learning for Coders

Fast.Al Practical Deep Learning from the Foundations

Stanford CS231n lecture series

http://course18.fast.ai/ml.html
https://course.fast.ai
https://course.fast.ai/part2
https://www.youtube.com/watch?v=i94OvYb6noo

Further resources - Lecture & Courses

A disciplined approach to neural network hyper-parameters: Part 1 --
learning rate, batch size, momentum, and weight decay - Smith 2018

SGDR: Stochastic Gradient Descent with Warm Restarts - Loshchilov &
Hutter, 2016

Entity Embeddings of Categorical Variables - Guo & Berkhahn, 2016

Regularization for Deep Learning: A Taxonomy - Kukacka, Golkov, &
Cremers, 2017

https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1604.06737
https://arxiv.org/abs/1710.10686
https://arxiv.org/abs/1710.10686

