
Understanding
Neural Networks

Giles Strong

17/08/19

LIP Summer-Student Tutorials

giles.strong@outlook.com

twitter.com/Giles_C_Strong

Amva4newphysics.wordpress.com

https://github.com/GilesStrong

mailto:giles.strong@outlook.com
https://twitter.com/Giles_C_Strong
https://amva4newphysics.wordpress.com/
https://github.com/GilesStrong

Seminar Questions

• What are artificial neural networks?

• How do they work?

• How can we improve them?

• Why use them in the first place?

2

Introduction and history

3

4

5

6

7

Mark I Perceptron
– Rosenblatt, 1957

• First machine to run the single-layer perceptron
algorithm

• Weights (w) set using potentiometers

• Used for image recognition, but didn't live up to
expectations; couldn't learn properly 8

ADALINE and MADALINE
- Widrow and Hoff 1960

• (Multi-layer) perceptron machine

• Still hardware-based

• Used a slightly more advanced algorithm to learn the
correct weights

• Still failed to perform as well as expected
9

Back propagation – 1960-1986

• Weight-learning based on chain-rule differentiation

• Basics, Kelley 1960 and Bryson 1962

• First applied to ANNs in 1982 by Werbos

• Shown to be useful in multi-layer ANNs by Rumelhart, Hinton, and Williams in
1986

• However, ANNs still underperformed, and were limited in size; training would get
stuck

• Interest in ANNs diminishes 10

https://arc.aiaa.org/doi/abs/10.2514/8.5282?journalCode=arsj
http://werbos.com/Neural/SensitivityIFIPSeptember1981.pdf
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0

Neural Network Renaissance - 2006

• Hinton and Salakhutdinov develop a layer-by-layer pre-training method

• Allowed backpropagation to work for deep neural-networks

• In 2010 deep neural-networks begin outperforming other methods in speech
recognition [Acero, Dahl, Deng, and Yu, 2010]

• Reinvigorated research in NNs

11

https://www.cs.toronto.edu/~hinton/science.pdf
https://ieeexplore.ieee.org/document/5740583/

Overview
Example

12

Example

• Say we want to predict the
class (orange or blue) of points
according to their position

• We want to draw decision
boundaries in our feature
space

13

Overview of a neural network

2 input features:
X and Y coordinates

14

Overview of a neural network

Neuron – applies
mathematical

transformation

Layer of neurons

15

Overview of a neural network

Add additional
layers

16

Overview of a neural network

Output

17

Overview of a neural network

Iterative training process
18

Overview of a neural network

Output

19

Overview of a neural network

Deep learning

20

Main components of a neural network

1. Neurons

2. The network

3. Training

21

Overview
Neurons

22

What is a neuron?

• Quite simply, it is a mathematical transformation:

• It takes vector of inputs x

• Weights each input element

• Applies an activation function, e.g sigmoid:

• And passes its output forwards in the network
23

What is a neuron?

• The function applied by the neuron
can be any continuous
mathematical function of the
inputs

• However there are several
‘standard’ ones which are used

• Sigmoid was a common choice

24

Overview
Networks

25

Constructing a network

• As seen earlier, a network is simply
many layers of neurons

26

Constructing a network

• A single neuron applies a basic
function to the inputs

• By connecting layers of neurons
together, more complex functions
can be constructed

27

Constructing a network

• The aim is to learn a function which
maps the inputs to the desired
outputs

28

Constructing a network

• Each neuron applies the same basic
function

• But the weights each neuron applies
can be different

•∴ create the map by altering the
weights

29

Overview
Optimisation

30

Towards training

• How do we alter the weights?

• Could test random settings, but unlikely to arrive at good settings for
anything but tiny networks

• Need to alter the weights intelligently, i.e. train the network

• To do this, we need to quantify the performance of the network

31

Quantifying performance - Loss

• This measure of performance is called a loss function

• It quantises the difference between the network’s prediction for a data
point, and the actual value of the data point

• Since the inputs are can be thought of has being drawn from a probability
density function, rather than an analytic function, the performance of a NN
is stochastic

• By evaluating the loss using several sets of inputs (a mini-batch) a more
general value may be computed 32

Quantifying performance - Loss

• One example is the mean squared-error (minibatch size of N):

Average over data points Difference between
prediction and truth

33

Quantifying performance - Loss

• For classification, the cross-entropy is better:

Average over data points Difference between
prediction and truth

34

Network optimisation

• Armed with a quantified measure of performance

• Our aim now is to minimise the loss function ⇒ an optimisation problem

• Lots of advanced algorithms exist: Genetic, Metropolis-Hastings, et cetera

• But the parameter space is huge! ⇒long convergence time

35

Network optimisation

• Turns out, the gradient descent
algorithm works just fine

36

Network optimisation

• The loss function contains many
local minima

• But each is about as optimal as the
others

• We simply need to reach to bottom
of a high-dimensional bowl

• We do this by moving down the
gradient

37

Gradient evaluation - numerical method

• In order to move down the slope, we first need to know the gradient of the
loss function at a given point:

• This can be estimated numerically by varying each weight in the network
by a small amount, h, and seeing how the output changes :

• This works, but is time-consuming to compute: we can hundreds of
thousands of weights to evaluate! 38

39

40

Gradient evaluation - Analytical method

• Because each neuron applies a continuous function, the entire network is
differentiable

• We can compute the gradient analytically !

41

Enter back-propagation

• Essentially, this method of analytical evaluation is a two-step process

• First we do a forward pass of a data point, to evaluate the loss

• Next we do a backwards pass through the network of the gradient of loss
at that parameter point

• We then know exactly how the each weight affect the loss function and can
adjust them accordingly

• This is called back-propagation
42

Back-propagation
Example

43

Simple example

X

+

x

y

z
44

Simple example

X

+

x

y

z

Inputs

Output

45

X

+

x

y

z

• Aim is to make decrease the value of g(x,y,x)

• Say we have an example data point: x=3, y=-4, z=2

• Let’s do a forward pass through our network

f

46

X

+

x

y

z

3

-4

2
f

47

X

+

x

y

z

3

-4

2
f

48

X

+

x

y

z

3

-4

2

-12
f

49

X

+

x

y

z

3

-4

2

-12
-10

• So for our test point, the output is -10

• Now let’s back-propagate the gradient

• This will tell us how we should alter the inputs in order to decrease the
output

g
f

50

X

+

x

y

z

3

-4

2

-12
-10

• The output’s effect on itself, just one

f

51

X

+

x

y

z

3

-4

2

-12
-10

1

f

52

g

X

+

x

y

z

3

-4

2

-12
-10

1

• Input z exerts a force of 1 on the output

1

f

53

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

f

54

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

• As does the value of f(x,y)

1
f

55

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

• Now we want to evaluate the effect of x on g:

1
f

56

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

• Let’s use the chain-rule:

1
f

57

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

• Let’s use the chain-rule:

1
f

We know this already
58

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

• Let’s use the chain-rule:

1
f

We know this already And we can evaluate this
59

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

1
f

60

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

1
f

61

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

1
f

-4

• Similarly:

62

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

1
f

-4

• So, we now know each variable’s effect on the output

• Now let’s take one step down the gradient

• We’ll use a step size (𝜇) of 0.1

3

63

g

X

+

x

y

z

3

-4

2

-12
-10

1
1

1
f

-4

3

New value Move down the gradient

64

g

X

+

x’

y

z

3.4

-4

2

1

f
3

65

g

X

+

x’

y’

z

3.4

-4.3

2

1

f
-14.62

66

g

X

+

x’

y’

z’
1.9

f

• Having updated our inputs, we find that the output has decreased by 2.72

-14.62

-12.72

3.4

-4.3

67

X
x

wx

• In actual implementation we can’t change our input data

• Instead we weight the incoming signals

• This is just another ‘sub-neuron’

• Meaning we can back-propagate the gradient into it

x’

68

• Let’s generalise and recap

69

f(x)

• Let’s generalise and recap

• We have a neuron in a network

70

f(x)

• Let’s generalise and recap

• We have a neuron in a network

• It receives inputs, applies a function, and produces an output

x0

x1

f

71

f(x)

• We have a neuron in a network

• It receives inputs, applies a function, and produces an output

• These inputs come from neurons in the previous layer

f
x0

x1

72

f(x)

• It receives inputs, applies a function, and produces an output

• These inputs come from neurons in the previous layer

• And the outputs are passed to the next layer

f
x0

x1

73

f(x)

• These inputs come from neurons in the previous layer

• And the outputs are passed to the next layer

• At the same time as calculating its output, the neuron can also compute its
local gradients

f
x0

x1

74

f(x)

• And the outputs are passed to the next layer

• At the same time as calculating its output, the neuron can also compute its
local gradients

• Eventually the loss function gets computed

f
x0

x1

75

f(x)

• Eventually the loss function gets computed

• The gradient of the loss eventually gets back-propagated to our neuron

• The neuron sees the effect of its output on the loss

f
x0

x1

76

f(x)

• The neuron sees the effect of its output on the loss

• Having already calculated its local gradients, the neuron simply times this
by the incoming gradient (chain-rule)

• The new gradient propagates on to the next layer

f
x0

x1

77

f(x)

• Having already calculated its local gradients, the neuron simply times this
by the incoming gradient (chain-rule)

• The new gradient propagates on to the next layer

• Having calculated all the analytic gradients we can update the weights by
stepping down the gradient

f
x0

x1

78

Problems with neural networks

79

80

Problems

• Even with back-propagation, NNs would get stuck during training

• Why did it take another 28 years for them to become useful?

81

Problems with neural networks
Activation function

82

Problem 1: Activation function

• The sigmoid function was used
because it was smooth between
the bounds of zero and one

• Early ‘connectionist’
interpretations of NNs likened it to
the firing rate of a biological
neuron

• But it has several problems...
83

1: It can kill gradients during back-prop

• When |x| is large, the local gradient
drops close to zero

• The saturated neuron effectively
passes zero loss-gradient back to
previous layers

• This stops them from updating
their weights

Large x

Tiny gradient

84

2: The outputs are not zero-centred

• Outputs are always positive

• Gradients propagated to the
weights are therefore either always
positive or always negative

• If the optimum set of weights is a
mixture of positive and negative
weights, then this can only be
reached by zigzagging towards the
optimum position

W0

w1

Weight updates

Optimum
85

3: Expensive to compute

• The sigmoid function contains the exponential function

• This requires a lot of CPU time to compute, compared to other functions

• Only a slight slowdown, but a slowdown nonetheless

• Especially once networks start to get large

86

An improvement: tanh

87

The solution
• Use a rectified linear-unit as the

activation function

• Introduced in 2000 by Hahnloser
et al.

• Gradient never saturates in
positive region

• Easy to compute

• Shown to converge 6 times more
quickly than tanh; Hinton,
Krizhevsky, and Sutskever 2012

88

https://www.nature.com/articles/35016072
https://www.nature.com/articles/35016072
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

The solution

• Still non-zero centred

• Still kills gradients in negative
region

• Depending on initialisation of
weights, can sometime never
activate (dead ReLu)

89

Problems with neural networks
Initialisation

90

Problem 2: Initialisation

• How exactly do we initialise the weights in a network?

• Could set them all to the same value; they’d all respond the same way

• We need something ‘symmetry breaking’

91

Problem 2: Initialisation

• Default was to sample a Gaussian distribution and times by some factor

• If the factor were too large then the neurons would saturate (for sigmoid
and tanh); gradients go to zero, nothing trains

• If the factor is too small, the output of the network becomes zero

• Factor must be set carefully by hand

92

The solution

• Mathematically sensible solution proposed by Bengio and Glorot in 2010:
Glorot initialisation

• Scales the Gaussian distribution by

• For neurons with fewer connections, the weights are higher

• For neurons with many connections, the weights are lower

• Similar levels of outputs throughout the network

93

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

The solution

• This was derived assuming a linear activation function

• Works well for sigmoid and tanh

• Doesn’t work for ReLu; results in lots of dead neurons

• Instead, only the number of inputs should be considered :

• He et al, 2015

94

https://arxiv.org/abs/1502.01852

Problems with neural networks
Convergence

95

Problem 3: Convergence time

• Gradient descent is able to
optimise the weights

• However, it can easily slow down
in narrowly sloping ‘valleys’

How GD moves Ideal moves
96

Standard gradient descent

• The standard update is:

New parameters

Current parameters

Learning rate

Gradient at current
parameters

97

Solution 1: Add momentum

• Instead, allow velocity to accumulate:
• Should help move quickly down

shallow slopes

Momentum
coefficient

98

Solution 1: Add momentum

99

Solution 2: Make momentum ‘smart’

• We saw a large speed up in
convergence with momentum

• But the method also overshot the
target

• The momentum update consists of a
momentum step, and a gradient step

Gradient step

Momentum step

Actual step

100

Solution 2: Make momentum ‘smart’

• Since we know we’ll make the
momentum step

• Let’s make it first before evaluating
the gradient

• Then we’ll be evaluating the gradient
at the position after the momentum
step

Gradient step

Momentum step

Actual step

101

Solution 2: Make momentum ‘smart’

• This one-step-lookahead allows for
reduced overshooting

• Allows for quicker convergence
• Referred to as Nesterov momentum

Evaluate gradient after momentum step
102

Solution 2: Make momentum ‘smart’

103

Solution 3: Adapt the learning rate

• For steep gradients we want a small
learning rate

• For shallow ones, a high learning rate
• Let’s give each parameter its own

learning rate
• And scale them according to past

gradients
• ADAGRAD; Duchi, Hazan, and Singha

2011

Square sum of past gradients

104

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

Solution 3: Adapt the learning rate

• Over time, the learning rate will drop
to zero

• Not so good for deep networks
• Let’s allow the store of past gradients

to decay
• Effectively keeping a moving average

of past gradients
• RMSProp; Hinton & Tieleman, 2012

Decay rate

Leaking store of past
gradients

105

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Solution 3: Adapt the learning rate

106

Final step: Combine them

• Both methods of adding momentum and adapting the learning rate are
seen to offer improvements

• No reason why they can’t be combined

• This is called ADAM; Ba & Kingma 2014

• And with Nesterov momentum - NADAM; Dozat 2015

107

https://arxiv.org/abs/1412.6980v8
http://cs229.stanford.edu/proj2015/054_report.pdf

Improvements

108

Improvements - Ensembling

• A single model is unlikely to be optimal for all possible inputs

• By training multiple copies of the same model

• Then combining their predictions

• The ensembled model is likely to be more performant in a wider range of
input regions

• Effectively a guaranteed improvement!

• Can experiment with different weighting schemes, combinations of
architectures, ML algorithms, et cetera 109

Improvements - Dropout

• Slightly counter-intuitive

• Involves randomly dropping
(masking) neurons per training
iteration

• Means that during that iteration,
the dropped neurons are never
used

• Hinton et al, 2014
110

http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf

Improvements - Dropout

• Prevents the network from
becoming over reliant on certain
inputs

• Forces it to generalise to the data

• Effectively trains many
sub-networks, i.e. internal
ensembling

• Speeds up training (fewer things
to evaluate) 111

Improvements - Dropout

• One subtlety:

• During training perhaps only half
the network is used

• During application, all the network
is used

• Need to scale outputs during
training to maintain similar levels
of activation in each regime

112

Advantages of neural networks

113

Advantages over other Machine Learning
methods

• Direct access to nonlinear responses

• Many previous ML methods have a linear response

• Ensembling them (e.g. random forest; an ensemble of decision trees) could
allow for non-linear fitting

• By using a nonlinear activation function, NNs can directly apply nonlinear
fitting

114

Advantages over other Machine Learning
methods

115

Advantages over other Machine Learning
methods

NN
116

Advantages over other Machine Learning
methods

BDTNN
117

Advantages over other Machine Learning
methods

BDT+rotationBDTNN
118

Advantages over other Machine Learning
methods

BDT+rotation BDT
119

Automated learning of powerful features

• Power of linear classifiers relies on computing appropriate features
beforehand

• These effectively warp the feature-space to make data classes be linearly
separable

120

Automated learning of powerful features

121

Automated learning of powerful features

• HEP example might be the invariant mass of a resonance

• High-level features which are nonlinear combinations of other features

• For linear models, these must be calculated by hand and fed in; feature
engineering

• High reliance on domain knowledge

122

Automated learning of powerful features

Whitson, 2015

No improvement when HL
features are added

DNN learns its own
discriminant features

123

Summary

• Neural networks are powerful implementations of Machine Learning

• Are able to make use of high-dimensional patterns in data

• Reduced feature engineering

• Must be built with care

124

Further resources - Lecture & Courses

• Fast.AI Introduction to Machine Learning for Coders

• Fast.AI Practical Deep Learning for Coders

• Fast.AI Practical Deep Learning from the Foundations

• Stanford CS231n lecture series

125

http://course18.fast.ai/ml.html
https://course.fast.ai
https://course.fast.ai/part2
https://www.youtube.com/watch?v=i94OvYb6noo

Further resources - Lecture & Courses

• A disciplined approach to neural network hyper-parameters: Part 1 --
learning rate, batch size, momentum, and weight decay - Smith 2018

• SGDR: Stochastic Gradient Descent with Warm Restarts - Loshchilov &
Hutter, 2016

• Entity Embeddings of Categorical Variables - Guo & Berkhahn, 2016

• Regularization for Deep Learning: A Taxonomy - Kukačka, Golkov, &
Cremers, 2017

126

https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1604.06737
https://arxiv.org/abs/1710.10686
https://arxiv.org/abs/1710.10686

