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Seminar Questions

• What are artificial neural networks?

• How do they work?

• How can we improve them?

• Why use them in the first place?
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Introduction and history
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Mark I Perceptron 
– Rosenblatt, 1957

• First machine to run the single-layer perceptron 
algorithm

• Weights (w) set using potentiometers

• Used for image recognition, but didn't live up to 
expectations; couldn't learn properly 8



ADALINE and MADALINE
- Widrow and Hoff 1960

• (Multi-layer) perceptron machine

• Still hardware-based

• Used a slightly more advanced algorithm to learn the 
correct weights

• Still failed to perform as well as expected
9



Back propagation – 1960-1986

• Weight-learning based on chain-rule differentiation

• Basics, Kelley 1960 and Bryson 1962

• First applied to ANNs in 1982 by Werbos

• Shown to be useful in multi-layer ANNs by Rumelhart, Hinton, and Williams in 
1986

• However, ANNs still underperformed, and were limited in size; training would get 
stuck

• Interest in ANNs diminishes 10

https://arc.aiaa.org/doi/abs/10.2514/8.5282?journalCode=arsj
http://werbos.com/Neural/SensitivityIFIPSeptember1981.pdf
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0


Neural Network Renaissance - 2006

• Hinton and Salakhutdinov develop a layer-by-layer pre-training method

• Allowed backpropagation to work for deep neural-networks

• In 2010 deep neural-networks begin outperforming other methods in speech 
recognition [Acero, Dahl, Deng, and Yu, 2010]

• Reinvigorated research in NNs
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https://www.cs.toronto.edu/~hinton/science.pdf
https://ieeexplore.ieee.org/document/5740583/


Overview
Example
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Example

• Say we want to predict the 
class (orange or blue) of points 
according to their position

• We want to draw decision 
boundaries in our feature 
space 
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Overview of a neural network

2 input features: 
X and Y coordinates 
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Overview of a neural network

Neuron – applies 
mathematical 

transformation 

Layer of neurons 
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Overview of a neural network

Add additional 
layers
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Overview of a neural network

Output
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Overview of a neural network

Iterative training process
18



Overview of a neural network

Output
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Overview of a neural network

Deep learning
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Main components of a neural network

1. Neurons

2. The network

3. Training
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Overview
Neurons
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What is a neuron?

• Quite simply, it is a mathematical transformation:

• It takes vector of inputs x

• Weights each input element

• Applies an activation function, e.g sigmoid:

• And passes its output forwards in the network
23



What is a neuron?

• The function applied by the neuron 
can be any continuous 
mathematical function of the 
inputs 

• However there are several 
‘standard’ ones which are used

• Sigmoid was a common choice
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Overview
Networks

25



Constructing a network

• As seen earlier, a network is simply 
many layers of neurons
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Constructing a network

• A single neuron applies a basic 
function to the inputs

• By connecting layers of neurons 
together, more complex functions 
can be constructed
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Constructing a network

• The aim is to learn a function which 
maps the inputs to the desired 
outputs
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Constructing a network

• Each neuron applies the same basic 
function

• But the weights each neuron applies 
can be different

•∴ create the map by altering the 
weights
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Overview
Optimisation
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Towards training

• How do we alter the weights?

• Could test random settings, but unlikely to arrive at good settings for 
anything but tiny networks

• Need to alter the weights intelligently, i.e. train the network

• To do this, we need to quantify the performance of the network

31



Quantifying performance - Loss

• This measure of performance is called a loss function 

• It quantises the difference between the network’s prediction for a data 
point, and the actual value of the data point

• Since the inputs are can be thought of has being drawn from a probability 
density function, rather than an analytic function, the performance of a NN 
is stochastic

• By evaluating the loss using several sets of inputs (a mini-batch) a more 
general value may be computed 32



Quantifying performance - Loss

• One example is the mean squared-error (minibatch size of N):

Average over data points Difference between 
prediction and truth
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Quantifying performance - Loss

• For classification, the cross-entropy is better:

Average over data points Difference between 
prediction and truth
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Network optimisation

• Armed with a quantified measure of performance

• Our aim now is to minimise the loss function ⇒ an optimisation problem

• Lots of advanced algorithms exist: Genetic, Metropolis-Hastings, et cetera

• But the parameter space is huge! ⇒long convergence time
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Network optimisation

• Turns out, the gradient descent 
algorithm works just fine
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Network optimisation

• The loss function contains many 
local minima

• But each is about as optimal as the 
others

• We simply need to reach to bottom 
of a high-dimensional bowl

• We do this by moving down the 
gradient

37



Gradient evaluation - numerical method

• In order to move down the slope, we first need to know the gradient of the 
loss function at a given point: 

• This can be estimated numerically by varying each weight in the network 
by a small amount, h, and seeing how the output changes :

• This works, but is time-consuming to compute: we can hundreds of 
thousands of weights to evaluate! 38
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Gradient evaluation - Analytical method

• Because each neuron applies a continuous function, the entire network is 
differentiable

• We can compute the gradient analytically !
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Enter back-propagation

• Essentially, this method of analytical evaluation is a two-step process

• First we do a forward pass of a data point, to evaluate the loss

• Next we do a backwards pass through the network of the gradient of loss 
at that parameter point

• We then know exactly how the each weight affect the loss function and can 
adjust them accordingly

• This is called back-propagation
42



Back-propagation
Example
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Simple example

X

+

x

y

z
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Simple example

X

+

x

y

z

Inputs

Output
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X

+

x

y

z

• Aim is to make decrease the value of g(x,y,x)

• Say we have an example data point: x=3, y=-4, z=2

• Let’s do a forward pass through our network

f
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3
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2
f
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X

+

x

y

z

3

-4

2
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X

+

x

y

z

3

-4

2

-12
f
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X

+

x

y

z

3

-4

2

-12
-10

• So for our test point, the output is -10

• Now let’s back-propagate the gradient

• This will tell us how we should alter the inputs in order to decrease the 
output

g
f
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X

+

x

y

z

3

-4

2

-12
-10

• The output’s effect on itself, just one

f
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X

+

x
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-10
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f
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X

+

x

y

z

3

-4

2

-12
-10

1

• Input z exerts a force of 1 on the output

1

f
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• As does the value of f(x,y)

1
f
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X

+

x

y

z

3
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-12
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1
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• Now we want to evaluate the effect of x on g:

1
f
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• Let’s use the chain-rule:

1
f
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X
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1
1

• Let’s use the chain-rule:

1
f

We know this already
58

g



X
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x
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2

-12
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1
1

• Let’s use the chain-rule:

1
f

We know this already And we can evaluate this
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• Similarly:
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X

+

x

y
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1
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-4

• So, we now know each variable’s effect on the output

• Now let’s take one step down the gradient

• We’ll use a step size (𝜇) of 0.1

3
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New value Move down the gradient
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X
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X

+

x’

y’

z

3.4

-4.3

2

1

f
-14.62
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X

+

x’

y’

z’
1.9

f

• Having updated our inputs, we find that the output has decreased by 2.72

-14.62

-12.72

3.4

-4.3

67



X
x

wx

• In actual implementation we can’t change our input data

• Instead we weight the incoming signals

• This is just another ‘sub-neuron’

• Meaning we can back-propagate the gradient into it

x’
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• Let’s generalise and recap
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f(x)

• Let’s generalise and recap

• We have a neuron in a network
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f(x)

• Let’s generalise and recap

• We have a neuron in a network

• It receives inputs, applies a function, and produces an output 

x0

x1

f
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f(x)

• We have a neuron in a network

• It receives inputs, applies a function, and produces an output 

• These inputs come from neurons in the previous layer

f
x0

x1
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f(x)

• It receives inputs, applies a function, and produces an output 

• These inputs come from neurons in the previous layer

• And the outputs are passed to the next layer

f
x0

x1
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f(x)

• These inputs come from neurons in the previous layer

• And the outputs are passed to the next layer

• At the same time as calculating its output, the neuron can also compute its 
local gradients

f
x0

x1
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f(x)

• And the outputs are passed to the next layer

• At the same time as calculating its output, the neuron can also compute its 
local gradients

• Eventually the loss function gets computed

f
x0

x1
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f(x)

• Eventually the loss function gets computed

• The gradient of the loss eventually gets back-propagated to our neuron

• The neuron sees the effect of its output on the loss

f
x0

x1
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f(x)

• The neuron sees the effect of its output on the loss

• Having already calculated its local gradients, the neuron simply times this 
by the incoming gradient (chain-rule) 

• The new gradient propagates on to the next layer

f
x0

x1
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f(x)

• Having already calculated its local gradients, the neuron simply times this 
by the incoming gradient (chain-rule) 

• The new gradient propagates on to the next layer

• Having calculated all the analytic gradients we can update the weights by 
stepping down the gradient

f
x0

x1
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Problems with neural networks
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Problems

• Even with back-propagation, NNs would get stuck during training

• Why did it take another 28 years for them to become useful?
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Problems with neural networks
Activation function
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Problem 1: Activation function

• The sigmoid function was used 
because it was smooth between 
the bounds of zero and one

• Early ‘connectionist’ 
interpretations of NNs likened it to 
the firing rate of a biological 
neuron

• But it has several problems...
83



1: It can kill gradients during back-prop

• When |x| is large, the local gradient 
drops close to zero

• The saturated neuron effectively 
passes zero loss-gradient back to 
previous layers

• This stops them from updating 
their weights

Large x

Tiny gradient
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2: The outputs are not zero-centred

• Outputs are always positive

• Gradients propagated to the 
weights are therefore either always 
positive or always negative

• If the optimum set of weights is a 
mixture of positive and negative 
weights, then this can only be 
reached by zigzagging towards the 
optimum position

W0

w1

Weight updates

Optimum
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3: Expensive to compute

• The sigmoid function contains the exponential function

• This requires a lot of CPU time to compute, compared to other functions

• Only a slight slowdown, but a slowdown nonetheless

• Especially once networks start to get large
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An improvement: tanh
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The solution
• Use a rectified linear-unit as the 

activation function

• Introduced in 2000 by Hahnloser 
et al.

• Gradient never saturates in 
positive region

• Easy to compute

• Shown to converge 6 times more  
quickly than tanh; Hinton, 
Krizhevsky, and Sutskever 2012 
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https://www.nature.com/articles/35016072
https://www.nature.com/articles/35016072
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


The solution

• Still non-zero centred

• Still kills gradients in negative 
region

• Depending on initialisation of 
weights, can sometime never 
activate (dead ReLu)
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Problems with neural networks
Initialisation
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Problem 2: Initialisation

• How exactly do we initialise the weights in a network?

• Could set them all to the same value; they’d all respond the same way

• We need something ‘symmetry breaking’
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Problem 2: Initialisation

• Default was to sample a Gaussian distribution and times by some factor

• If the factor were too large then the neurons would saturate (for sigmoid 
and tanh); gradients go to zero, nothing trains

• If the factor is too small, the output of the network becomes zero

• Factor must be set carefully by hand
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The solution

• Mathematically sensible solution proposed by Bengio and Glorot in 2010: 
Glorot initialisation 

• Scales the Gaussian distribution by 

• For neurons with fewer connections, the weights are higher

• For neurons with many connections, the weights are lower

• Similar levels of outputs throughout the network

93

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf


The solution

• This was derived assuming a linear activation function

• Works well for sigmoid and tanh

• Doesn’t work for ReLu; results in lots of dead neurons

• Instead, only the number of inputs should be considered :

• He et al, 2015
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https://arxiv.org/abs/1502.01852


Problems with neural networks
Convergence
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Problem 3: Convergence time

• Gradient descent is able to 
optimise the weights

• However, it can easily slow down 
in narrowly sloping ‘valleys’ 

How GD moves Ideal moves
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Standard gradient descent

• The standard update is:

New parameters

Current parameters

Learning rate

Gradient at current 
parameters

97



Solution 1: Add momentum

• Instead, allow velocity to accumulate:
• Should help move quickly down 

shallow slopes

Momentum 
coefficient
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Solution 1: Add momentum
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Solution 2: Make momentum ‘smart’

• We saw a large speed up in 
convergence with momentum

• But the method also overshot the 
target

• The momentum update consists of a 
momentum step, and a gradient step

Gradient step

Momentum step

Actual step
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Solution 2: Make momentum ‘smart’

• Since we know we’ll make the 
momentum step

• Let’s make it first before evaluating 
the gradient

• Then we’ll be evaluating the gradient 
at the position after the momentum 
step

Gradient step

Momentum step

Actual step
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Solution 2: Make momentum ‘smart’

• This one-step-lookahead allows for 
reduced overshooting

• Allows for quicker convergence
• Referred to as Nesterov momentum

Evaluate gradient after momentum step
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Solution 2: Make momentum ‘smart’
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Solution 3: Adapt the learning rate

• For steep gradients we want a small 
learning rate

• For shallow ones, a high learning rate
• Let’s give each parameter its own 

learning rate
• And scale them according to past 

gradients
• ADAGRAD; Duchi, Hazan, and Singha 

2011

Square sum of past gradients

104

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf


Solution 3: Adapt the learning rate

• Over time, the learning rate will drop 
to zero

• Not so good for deep networks
• Let’s allow the store of past gradients 

to decay
• Effectively keeping a moving average 

of past gradients
• RMSProp; Hinton & Tieleman, 2012

Decay rate

Leaking store of past 
gradients
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https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


Solution 3: Adapt the learning rate
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Final step: Combine them

• Both methods of adding momentum and adapting the learning rate are 
seen to offer improvements

• No reason why they can’t be combined

• This is called ADAM; Ba & Kingma 2014

• And with Nesterov momentum  - NADAM; Dozat 2015
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https://arxiv.org/abs/1412.6980v8
http://cs229.stanford.edu/proj2015/054_report.pdf


Improvements
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Improvements - Ensembling

• A single model is unlikely to be optimal for all possible inputs

• By training multiple copies of the same model

• Then combining their predictions

• The ensembled model is likely to be more performant in a wider range of 
input regions

• Effectively a guaranteed improvement!

• Can experiment with different weighting schemes, combinations of 
architectures, ML algorithms, et cetera 109



Improvements - Dropout

• Slightly counter-intuitive

• Involves randomly dropping 
(masking) neurons per training 
iteration

• Means that during that iteration, 
the dropped neurons are never 
used

• Hinton et al, 2014
110

http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf


Improvements - Dropout

• Prevents the network from 
becoming over reliant on certain 
inputs

• Forces it to generalise to the data

• Effectively trains many 
sub-networks, i.e. internal 
ensembling

• Speeds up training (fewer things 
to evaluate) 111



Improvements - Dropout

• One subtlety:

• During training perhaps only half 
the network is used

• During application, all the network 
is used

• Need to scale outputs during 
training to maintain similar levels 
of activation in each regime
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Advantages of neural networks
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Advantages over other Machine Learning 
methods

• Direct access to nonlinear responses

• Many previous ML methods have a linear response

• Ensembling them (e.g. random forest; an ensemble of decision trees) could 
allow for non-linear fitting

• By using a nonlinear activation function, NNs can directly apply nonlinear 
fitting

114



Advantages over other Machine Learning 
methods
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Advantages over other Machine Learning 
methods

NN
116



Advantages over other Machine Learning 
methods

BDTNN
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Advantages over other Machine Learning 
methods

BDT+rotationBDTNN
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Advantages over other Machine Learning 
methods

BDT+rotation BDT
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Automated learning of powerful features

• Power of linear classifiers relies on computing appropriate features 
beforehand

• These effectively warp the feature-space to make data classes be linearly 
separable
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Automated learning of powerful features
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Automated learning of powerful features

• HEP example might be the invariant mass of a resonance

• High-level features which are nonlinear combinations of other features

• For linear models, these must be calculated by hand and fed in; feature 
engineering

• High reliance on domain knowledge
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Automated learning of powerful features

Whitson, 2015

No improvement when HL 
features are added

DNN learns its own 
discriminant features
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Summary

• Neural networks  are powerful implementations of Machine Learning

• Are able to make use of high-dimensional patterns in data

• Reduced feature engineering 

• Must be built with care
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Further resources - Lecture & Courses

• Fast.AI Introduction to Machine Learning for Coders

• Fast.AI Practical Deep Learning for Coders

• Fast.AI Practical Deep Learning from the Foundations

• Stanford CS231n lecture series
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http://course18.fast.ai/ml.html
https://course.fast.ai
https://course.fast.ai/part2
https://www.youtube.com/watch?v=i94OvYb6noo


Further resources - Lecture & Courses

• A disciplined approach to neural network hyper-parameters: Part 1 -- 
learning rate, batch size, momentum, and weight decay - Smith 2018

• SGDR: Stochastic Gradient Descent with Warm Restarts - Loshchilov & 
Hutter, 2016

• Entity Embeddings of Categorical Variables - Guo & Berkhahn, 2016

• Regularization for Deep Learning: A Taxonomy - Kukačka, Golkov, & 
Cremers, 2017
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https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1604.06737
https://arxiv.org/abs/1710.10686
https://arxiv.org/abs/1710.10686

