C++ and Linux tutorial

1. A Linux terminal is a text interface that allows you to write and execute commands. The goal of this exercise is to learn a few simple commands.
a) Open a new terminal (shell)
b) Create a new directory named test: mkdir test
c) Go into the directory: cd test
d) Start a text editor software to write a program in C++ (emacs, vim or gedit): gedit test.txt
e) Type something, save the file and exit the editor
f) A few other useful Linux commands are:

Command	Utility
pwd	Show path of current directory
mkdir name	Create directory name
cd name	Go into directory name
gedit	Start the text editor
ls	List all files and directories in current directory
ls -l	Include additional information in the listing
cp, mv	Copy/move files
man command	Open the manual of a command
command -h	Get help on the syntax of a command
g ++	Compile C and C++ programs
exit	Exit the terminal
tar xvzf name.tar.gz	Uncompress file with extension tar.gz
tar cvzf name.tar.gz	Create zipped file with extension tar.gz

2. Introduction to $\mathbf{C}++\mid$ The goal of this task is to write a first $\mathrm{C}++$ program.
a) Open a terminal
b) Create a new directory called hello
c) Go into the directory
d) Use a text editor to open a C++ file called hello.cpp
e) Type the following code:
\#include <iostream>
using namespace std;
int main()\{
```
        cout<<" Hello 
        return 0;
}
```

f) Compile the code: $\mathrm{g}++$ hello.cpp -o hello.x
g) Run the code: ./hello.x
h) Change the output text, compile and run the program again
3. Another $\mathbf{C}++$ example | The goal is to write a code that generates a table with the values given by a parabola.
a) Open a file parabola.cpp and write the following code:

```
#include <iostream>
using namespace std;
int main(){
    for(int i = 1; i <=10; i ++){
        double y = i*i; // Create new variable
        cout <<i <<"\ t " << y<<endl;
    }
    return 0;
}
```

b) Run the program saving the output to a file parabola.dat: ./parabola.x $>$ parabola.dat
4. Simple arrays | Implement a program that defines an array with the following values
$\{10.5,9.3,11.4,10.9,13,8.4,9.2,8.9,10.3,11.2,12.1,8.4,9.2,9.9,10.1\}$
The program should run over all values and print them to the screen. Then it should ask the user to enter a number between 1 and 15 and print the corresponding number of the array.
5. Calculate mean values and standard deviation | Change the program you wrote on the previous exercise to calculate the following quantities:
a) Mean value of the numbers in the array

$$
\begin{equation*}
<x>=\frac{1}{N} \sum_{i=1}^{N} x_{i} \tag{1}
\end{equation*}
$$

b) Standard deviation

$$
\begin{equation*}
\sigma=\sqrt{v a r}, \quad \text { var }=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-<x>\right)^{2} \tag{2}
\end{equation*}
$$

6. Conditional statements | Using the same program as in the previous exercises, define the following array

$$
\{1,0,0,1,0,1,1,1,0,0,1,0,1,0,1\}
$$

Loop over the entries of the array and whenever you find an entry with the value 1 print the corresponding entry of the initial array. Then for all entries marked with 0 (or 1) calculate the mean value and the standard deviation.

