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Strong galaxy-galaxy lensing
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Reconstructed 
source
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Reconstructed 
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Subhalo mass function
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Strong lensing images

Present:
~60 lenses 
(mostly HST)

Near future:
>150.000 lenses

(JWST, Euclid, 
Rubin Obs., ELT)
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Marginal posteriors
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Our strategy: Targeted neural inference
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NRE (SWYFT)

Coogan+ 2010.07032



Step 1: Lens and source fit using variational inference

9Karchev+ 2105.09465



Step 1: GP+VI+AD
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Step 1: GP+VI+AD
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Step 1: GP+VI+AD
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Step 2: Targeted training of inference network for the 
inference of subhalo population properties
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Results: Constraints on subhalo population (in mock data)
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PRELIMINARY!

PRELIMINARY!

PRELIMINARY!

Montel+ in prep.



What lessons for indirect dark matter 
searches?
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Indirect dark matter searches are broken
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What should happen



Indirect dark matter searches are broken
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What usually happens



All analyses are defined by their compromises
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Results tend to be extremely hard to compare.



A Bayesian perspective
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Physical simulators Instrument simulation Complete accounting for all 
known unknowns

Independently of the analysis technique, everything relevant for analyzing a piece of data can be 
in principle summarized in a huge probabilistic model.

Probabilistic model

Problem: Higher model realism

More parameters Higher per-simulation costs



A graphical model for Fermi LAT data (illustration)
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A high fidelity analysis of complex data is hard with 
commonly used (likelihood-based) techniques

Don’t PANIC
21

Handley+ 1506.00171



Cutting to the chase with neural simulation-based 
inference

22Miller+ 2011.13951, Miller+ 2107.01214, Cole+ in prep.



Simulation-based inference

Some relevant papers:
Cranmer+ 1911.01429
Durkan+ 2002.03712
Papamakarios+ 1605.06376
Tran+ 1702.08896
Alsing+ 1903.00007
Hermans+ 1903.04057
Miller+ 2011.13951
Miller+ 2107.01214
...

Image: Lueckermann+ 2101.04653
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Truncated marginal neural ratio estimation with SWYFT
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Truncated marginal neural ratio estimation with SWYFT
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https://github.com/undark-lab/swyft



What can this do for us?

Delaunoy+ 2010.12931

Gravitational waves

→ Instant localization

10-20 nuisance parameters

Hermans+ 2011.14923

Analysis of GD-1 stream

→ Lower limit on DM 
mass

> 100 nuisance 
parameters

Cole+ in prep

Cosmology

→ Cosmological 
parameters

10-20 nuisance 
parameters

Strong lensing

→ Constrain on DM 
mass

> 100.000 nuisance 
parameters
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Simulation-based inference as key for conclusive DM 
searches

Template 
regression

Line 
searchesNon-poissonian 

template fits

Cross-correlation 
techniques

One-point 
statistics

Neural 
simulation-based 

inference
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Key



Conclusions
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Conclusions

● We developed a new analysis pipeline for strong lensing searches for DM 
substructure images

○ Step 1: Fitting images with end-to-end differentiable models and variational inference
○ Step 2: Targeted training of inference networks to extract population information about small 

scale structure
○ The method works (and is transferable to other data analysis problems). Right now sensitivity 

down to O(1e8 Msol) on mock ELT images. Much more to come.
● Deep learning can be key for convincing dark matter discoveries in 

astrophysical data
○ Classical analysis methods enforce compromises that make results hard to compare.
○ Neural simulation-based inference enables us to consider much more complete and realistic 

models.
○ Huge potential for the community to combine forces and converge on the interpretation of dark 

matter signal candidates.
● With SWYFT we provide a “batteries included” open source tool for neural 

simulation-based inference (steep learning curve, but high gain).

29Thank you!



Backup slides

30



31



Compare with: Approximate Bayesian Computation
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Detection of individual subhalos

● We train a network to estimate marginal posteriors
● We handle models with hundreds of thousand of parameters
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