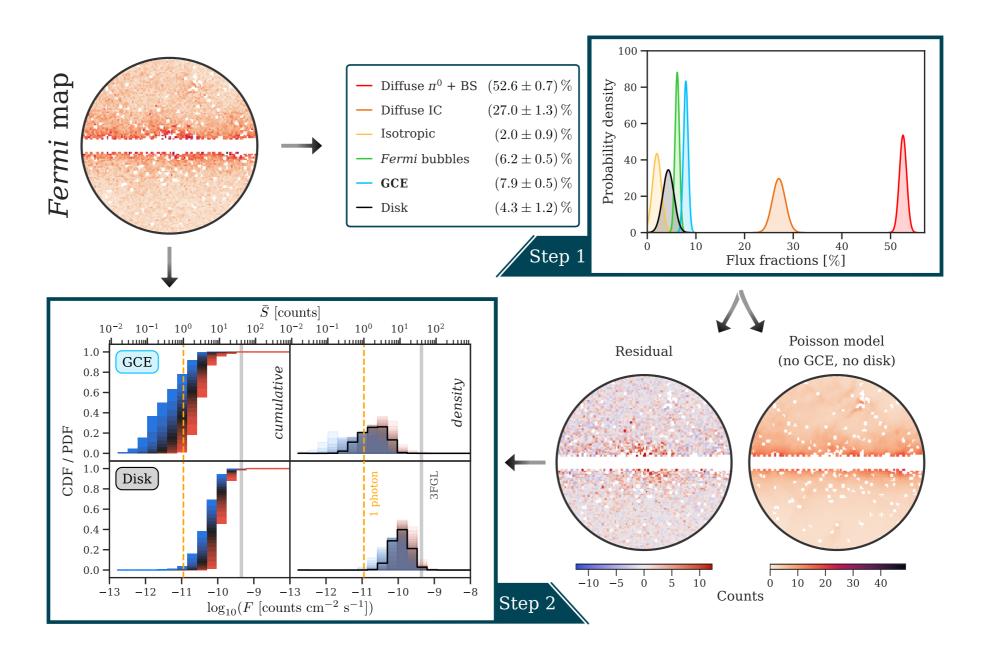


A Machine Learning Based Approach to the Galactic Center Excess

NICK RODD | PANIC 2021 | 5 SEPTEMBER 2021

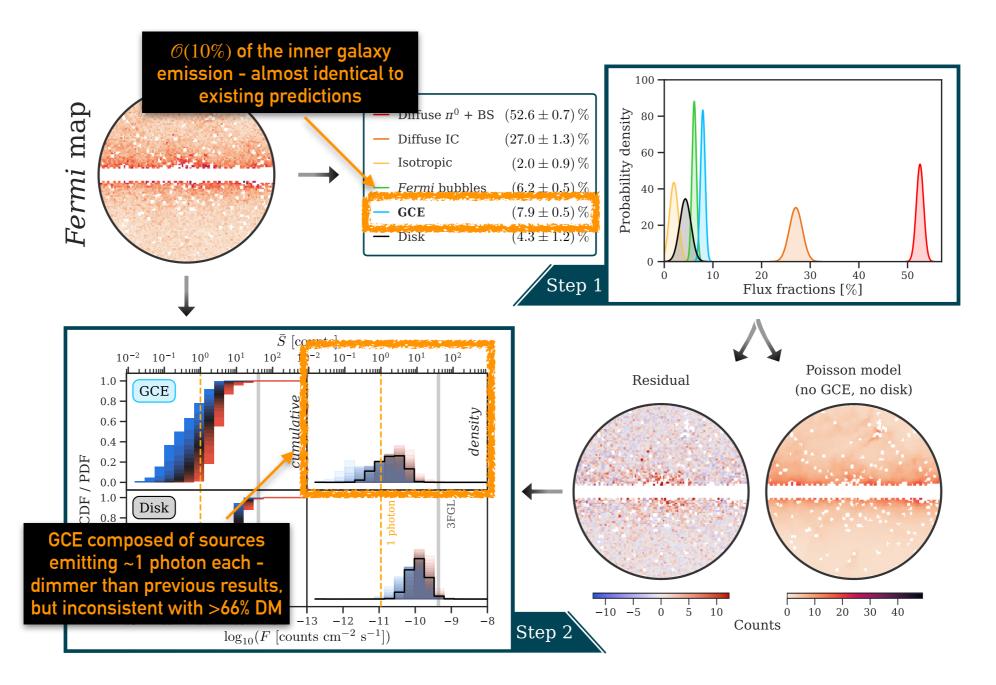
Headline Results



CERN

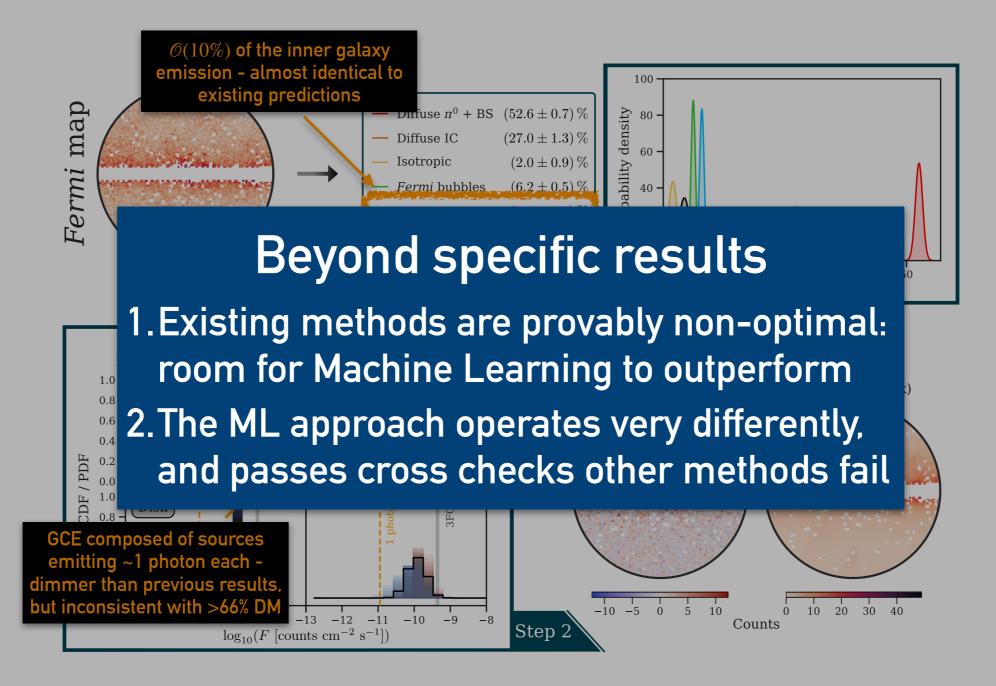
CERN

Headline Results



CERN

Headline Results



Outline

1. The GCE: dark matter or millisecond pulsars?

2. Likelihood approaches, and why ML can improve on them

3. Our convolutional neural network approach

The Galactic Center Excess

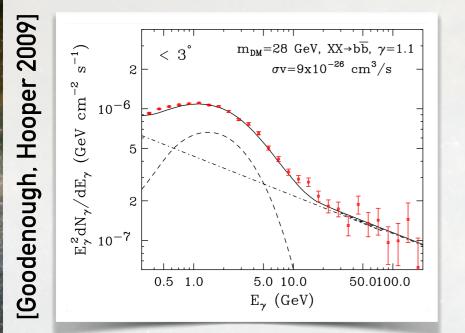
Nick Rodd | A ML approach to the GCE

Very incomplete summary missing many important developments. For more see recent reviews in: [Murgia 2020] or [Leane 2020]

6

The Galactic Center Excess

Dark Matter



Exhibited many expected properties of DM, e.g. [Daylan, NLR+ 2014]

> Very incomplete summary missing many important developments. For more see recent reviews in: [Murgia 2020] or [Leane 2020]

Nick Rodd | A ML approach to the GCE

7

Dark Matter $m_{DM}=28$ GeV, XX $\rightarrow b\overline{b}$, $\gamma=1.1$ < 3 $\sigma v = 9 \times 10^{-26} \text{ cm}^3/\text{s}$ 2

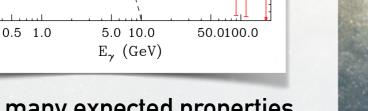
The Galactic Center Excess

Goodenough, Hooper 2009]

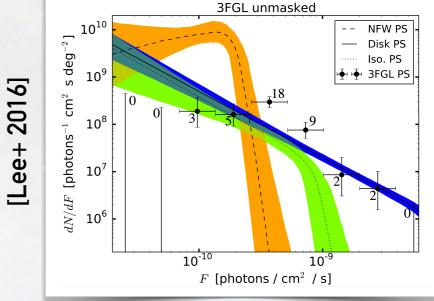
 $s^{-1})$

2

Exhibited many expected properties of DM, e.g. [Daylan, NLR+ 2014]



Millisecond Pulsars



Data preferred clumpy point-source statistics rather than smoother DM

Unresolved MSPs had been suggested earlier e.g. [Wang+ 2005], [Hooper, Goodenough 2010], [Abazajian, Kaplinghat 2012]

Very incomplete summary missing many important developments. For more see recent reviews in: [Murgia 2020] or [Leane 2020]

8

Dark Matter $m_{DM}=28$ GeV, XX $\rightarrow b\overline{b}$, $\gamma=1.1$ < 3 $\sigma v = 9 \times 10^{-26} \text{ cm}^3/\text{s}$ 2

Goodenough, Hooper 2009]

 $s^{-1})$

2

0.5 1.0

Exhibited many expected properties of DM, e.g. [Daylan, NLR+ 2014]

5.0 10.0

 E_{γ} (GeV)

50.0100.0

Nick Rodd | A ML approach to the GCE

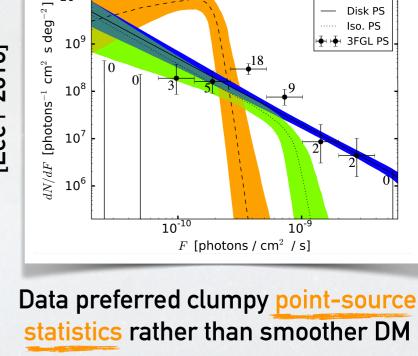
The Galactic Center Excess

Millisecond Pulsars

3FGL unmasked

CERN

NFW PS

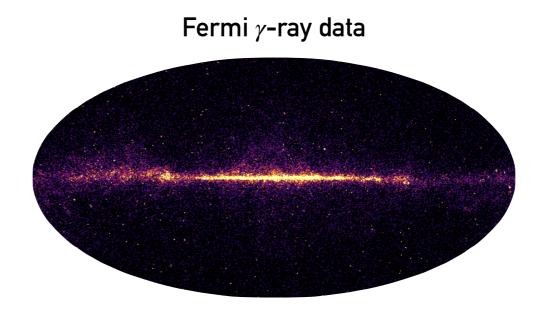


Unresolved MSPs had been suggested earlier e.g. [Wang+ 2005], [Hooper, Goodenough 2010], [Abazajian, Kaplinghat 2012]

Very incomplete summary missing many important developments. For more see recent reviews in: [Murgia 2020] or [Leane 2020]

[Lee+ 2016]

 10^{10}

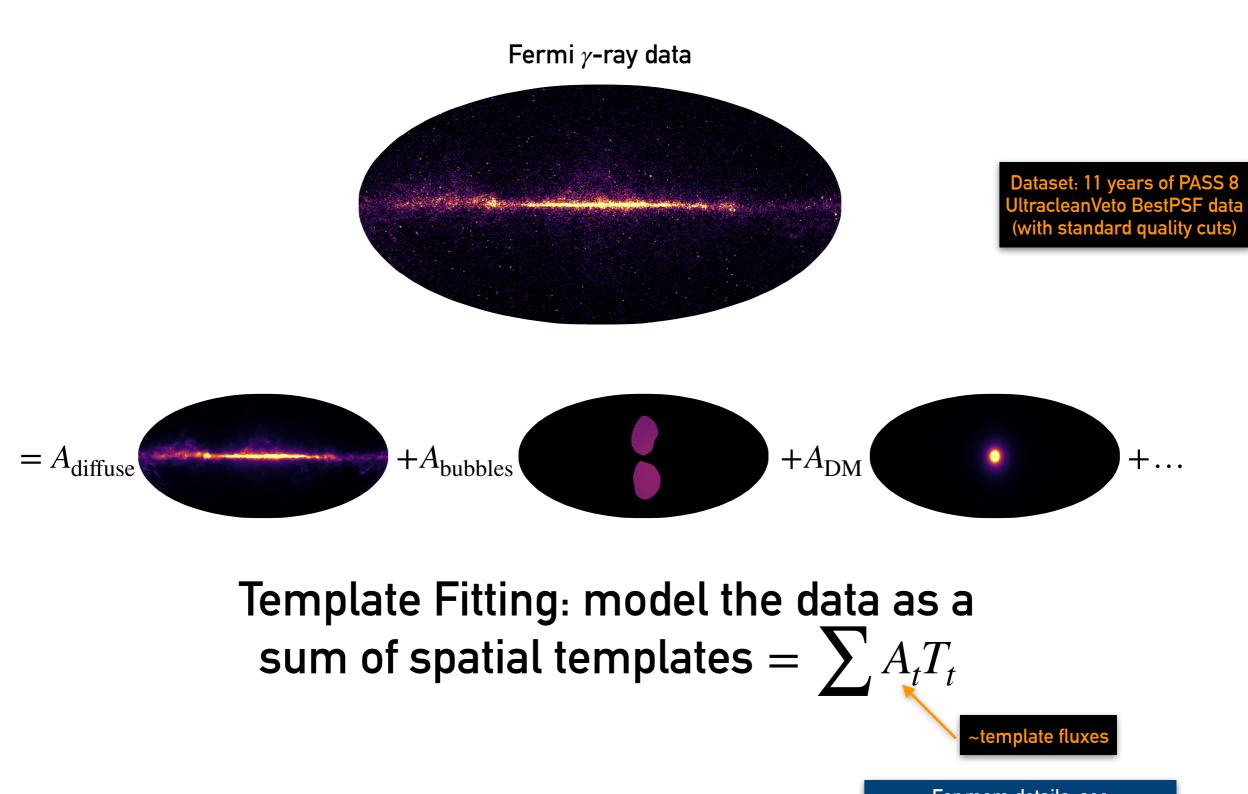


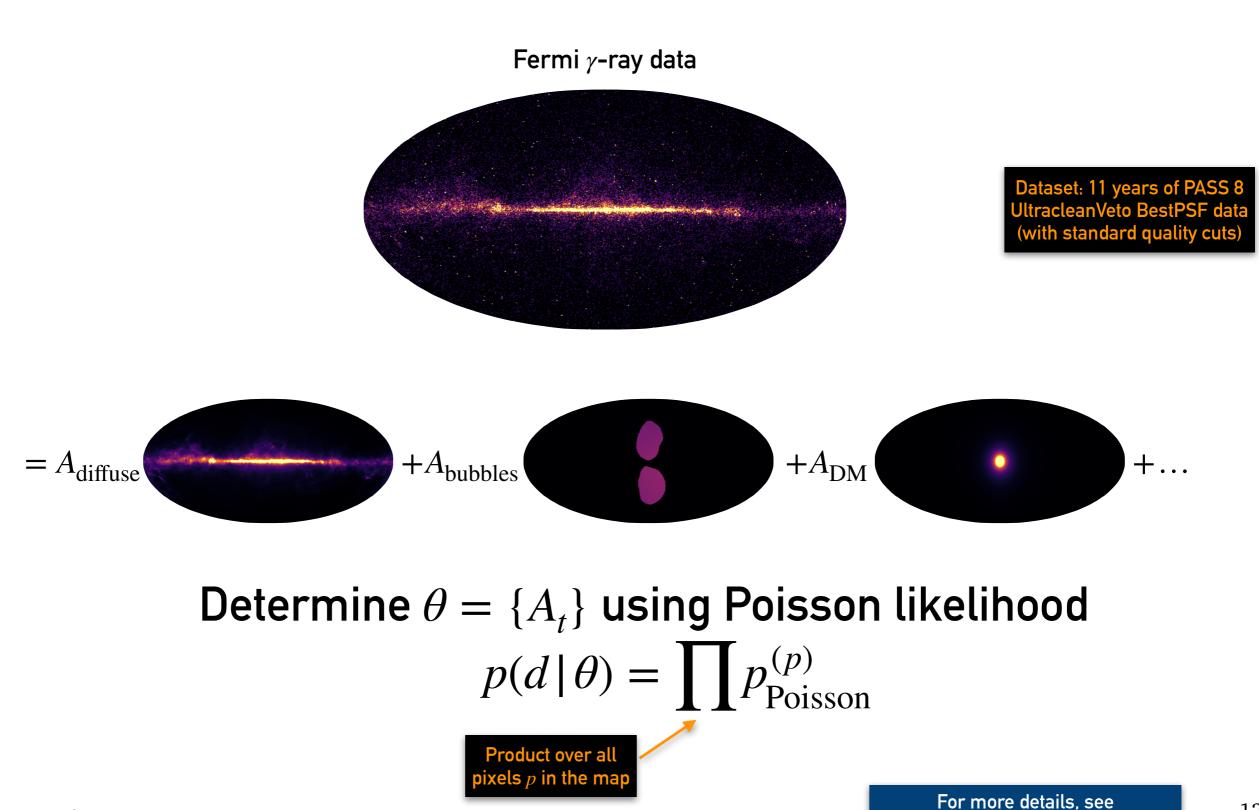
Dataset: 11 years of PASS 8 UltracleanVeto BestPSF data (with standard quality cuts)

Template Fitting: model the data as a sum of spatial templates = $\sum A_t T_t$

Nick Rodd | A ML approach to the GCE

-template fluxe



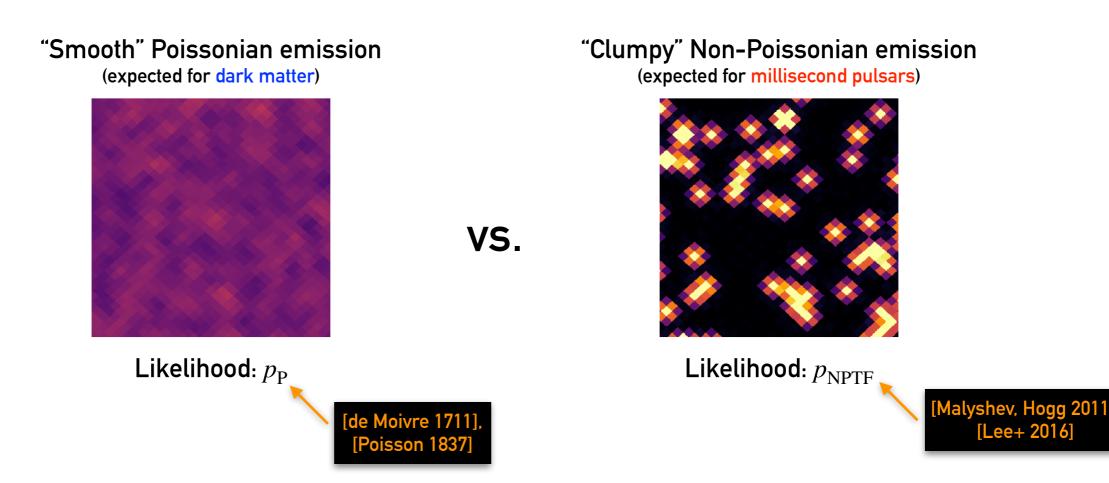


Nick Rodd | A ML approach to the GCE

[Mishra-Sharma, NLR, Safdi 2016]

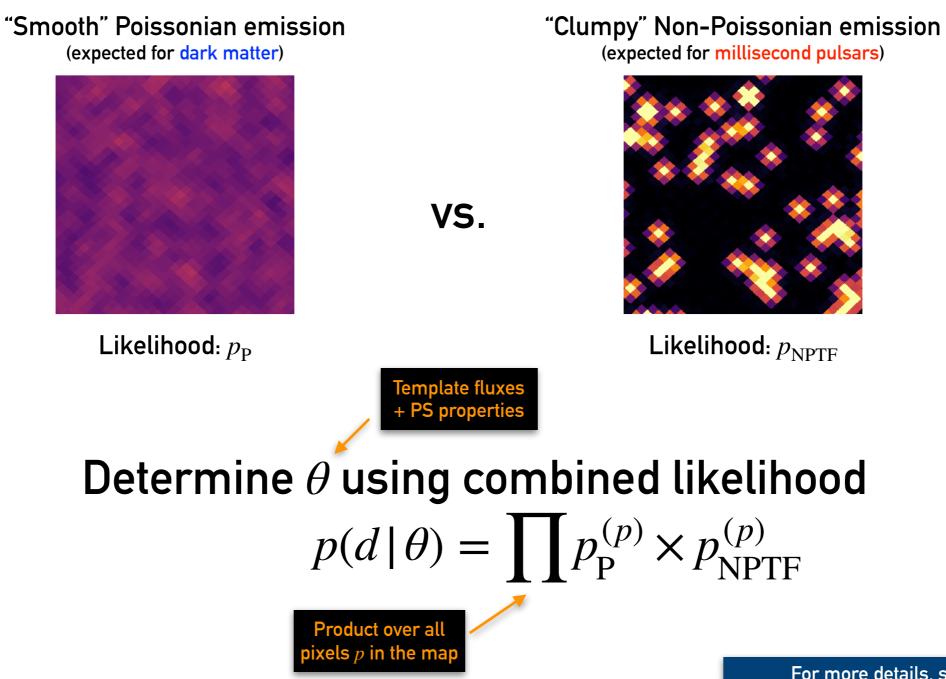
12

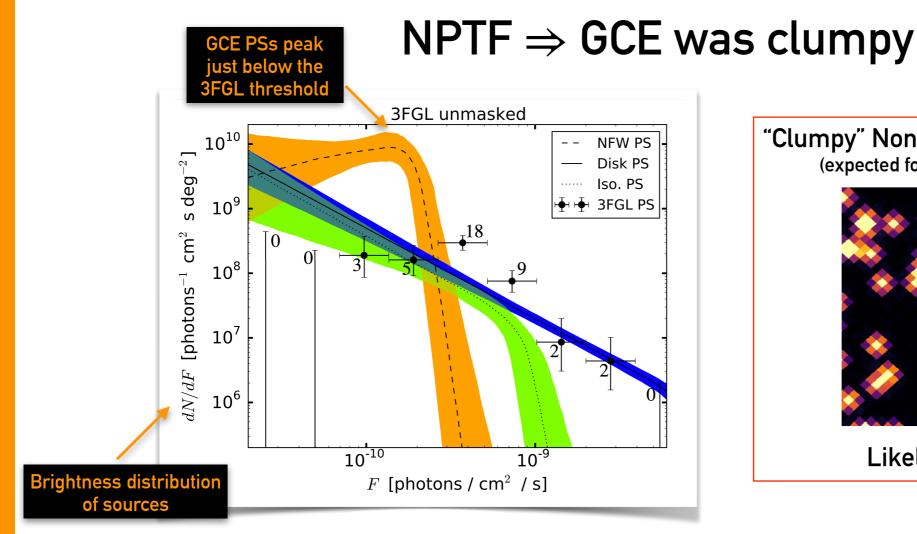
Non-Poissonian Template Fitting



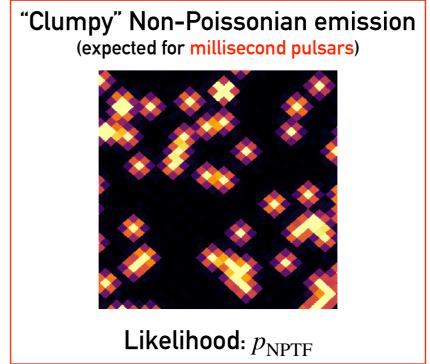
13

Non-Poissonian Template Fitting

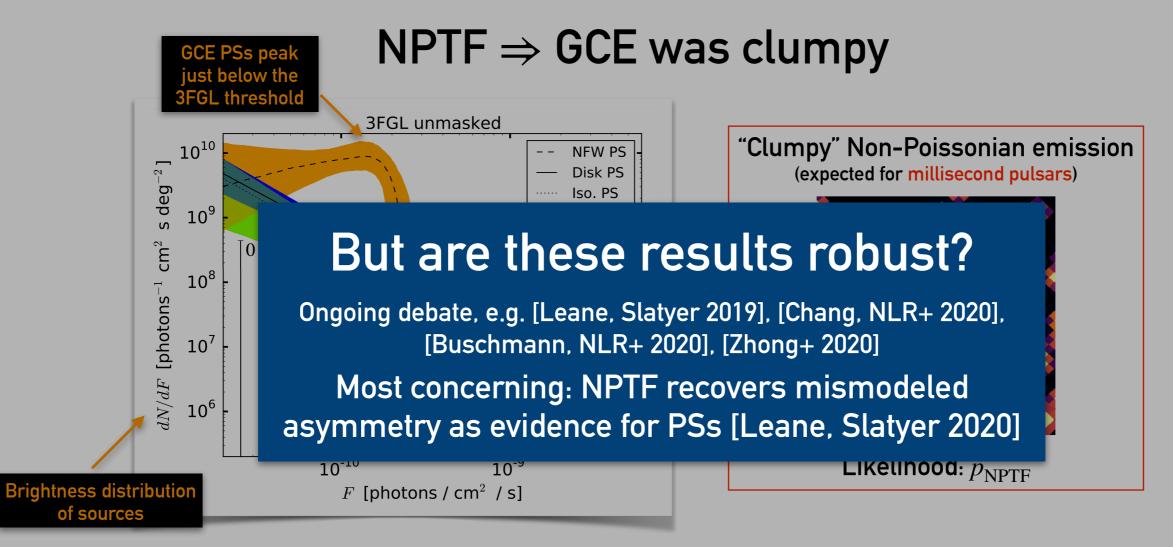




[Lee, Lisanti, Safdi, Slatyer, Xue 2016]



Additional contemporaneous evidence Wavelets: [Bartels, Krishnamurthy, Weniger 2016], ... Non-spherical morphology: [Macias+ 2018], ...



[Lee, Lisanti, Safdi, Slatyer, Xue 2016]

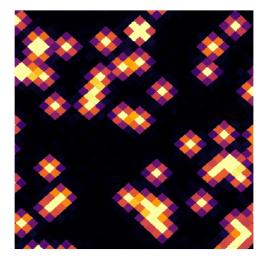
VS.

"Smooth" Poissonian emission (expected for dark matter)



Likelihood: $p_{\rm P}$

"Clumpy" Non-Poissonian emission (expected for millisecond pulsars)



Likelihood: $p_{\rm NPTF}$

Nick Rodd | A ML approach to the GCE

17

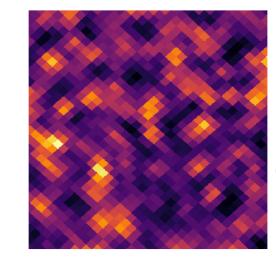
ΈR

VS.

"Smooth" Poissonian emission (expected for dark matter)

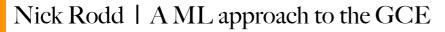
Likelihood: $p_{\rm P}$

"Clumpy" Non-Poissonian emission (expected for millisecond pulsars)



 $\begin{array}{c} {\rm increase} \ N_{\rm PS} \\ {\rm decrease} \ F_{\rm PS} \\ {\rm (leaving total flux unchanged)} \end{array}$

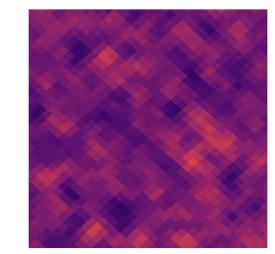
Likelihood: $p_{\rm NPTF}$



VS.

Likelihood: $p_{\rm P}$

"Clumpy" Non-Poissonian emission (expected for millisecond pulsars)

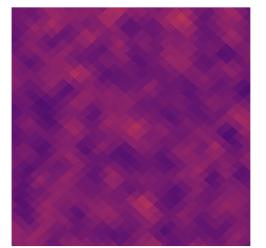


 $\begin{array}{c} {\rm increase} \ N_{\rm PS} \\ {\rm decrease} \ F_{\rm PS} \\ {\rm (leaving total flux unchanged)} \end{array}$

Likelihood: $p_{\rm NPTF}$

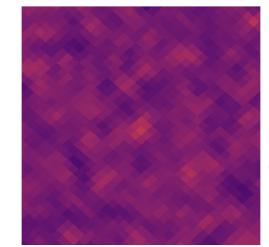
1. Poisson vs Non-Poisson divide is artificial

VS.



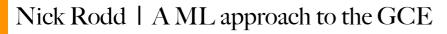
Likelihood: $p_{\rm P}$

"Clumpy" Non-Poissonian emission (expected for millisecond pulsars)

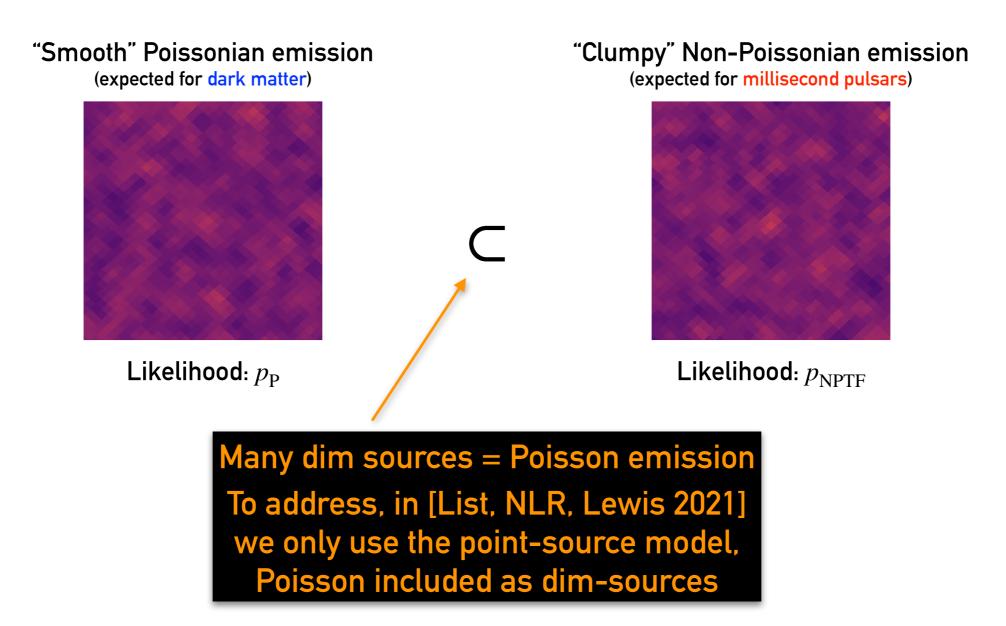


 $\begin{array}{c} {\rm increase} \ N_{\rm PS} \\ {\rm decrease} \ F_{\rm PS} \\ {\rm (leaving total flux unchanged)} \end{array}$

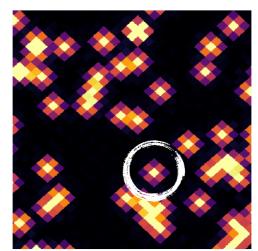
Likelihood: $p_{\rm NPTF}$



1. Poisson vs Non-Poisson divide is artificial



"Clumpy" Non-Poissonian emission (expected for millisecond pulsars)

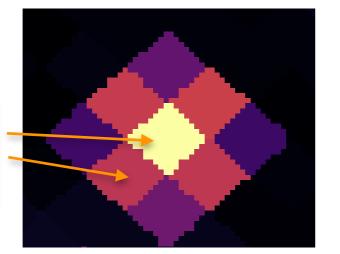


Likelihood: p_{NPTF}

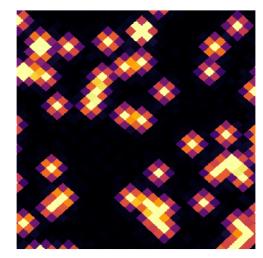
 $p(d \mid \theta) = \prod p_{\mathbf{P}}^{(p)} \times p_{\mathbf{NPTF}}^{(p)}$

Product over all pixels p in the map

For additional discussion, further issues with NPTF, and an improved likelihood, see [Collin, NLR, Erjavec, Perez 2021]



Not independent: one point-source smeared by the instrument "Clumpy" Non-Poissonian emission (expected for millisecond pulsars)

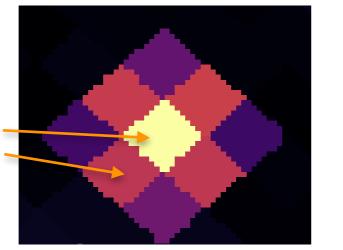


Likelihood: $p_{\rm NPTF}$

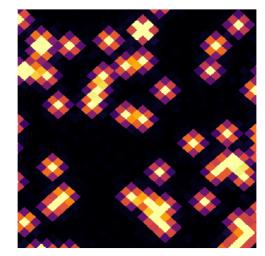
 $p(d \mid \theta) = \prod p_{\mathbf{P}}^{(p)} \times p_{\mathbf{NPTF}}^{(p)}$

Product over all pixels *p* in the map

For additional discussion, further issues with NPTF, and an improved likelihood, see [Collin, NLR, Erjavec, Perez 2021]



Not independent: one point-source smeared by the instrument "Clumpy" Non-Poissonian emission (expected for millisecond pulsars)



Likelihood: $p_{\rm NPTF}$

NPTF only approximates the true likelihood - unused information ML can exploit

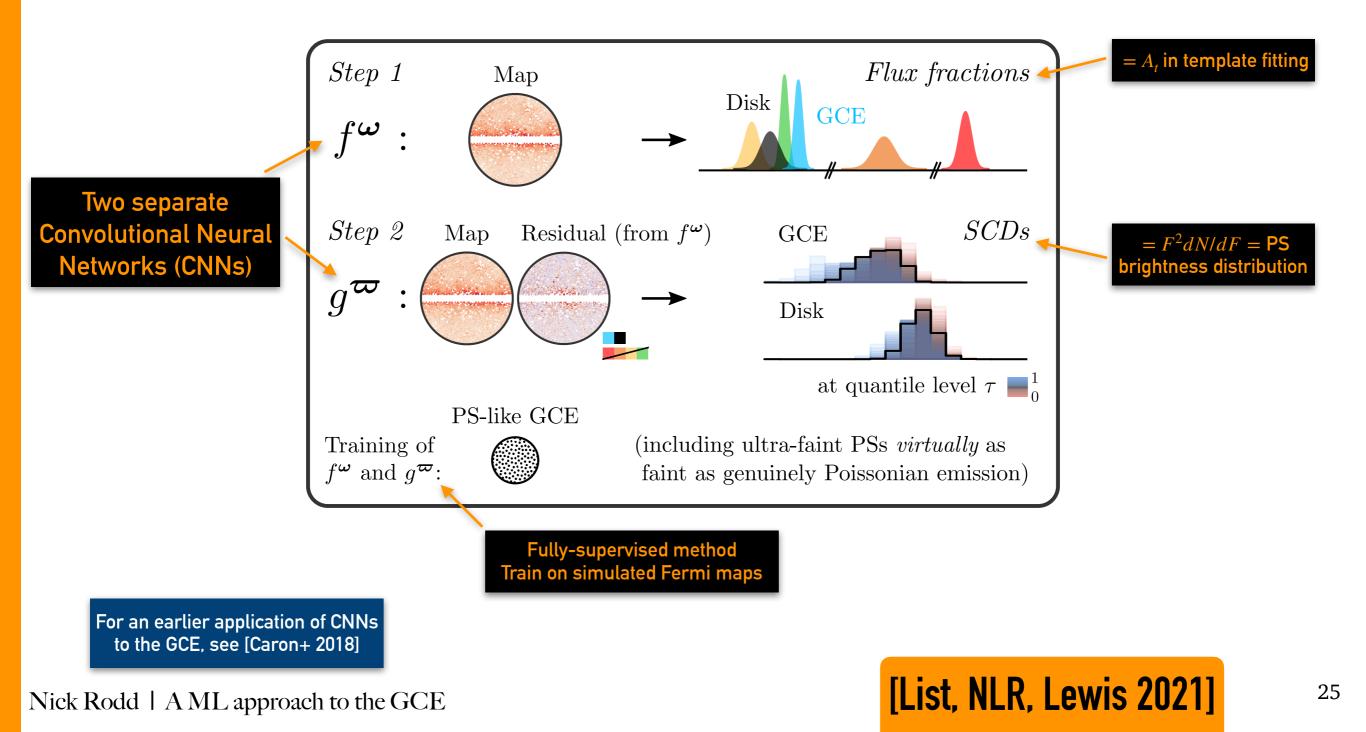
 $p(d \mid \theta) \approx \prod p_{P}^{(p)} \times p_{NPTF}^{(p)}$

For additional discussion, further issues with NPTF, and an improved likelihood, see [Collin, NLR, Erjavec, Perez 2021]



ΈR

A two step approach to the GCE



Step 1: estimate template flux fractions

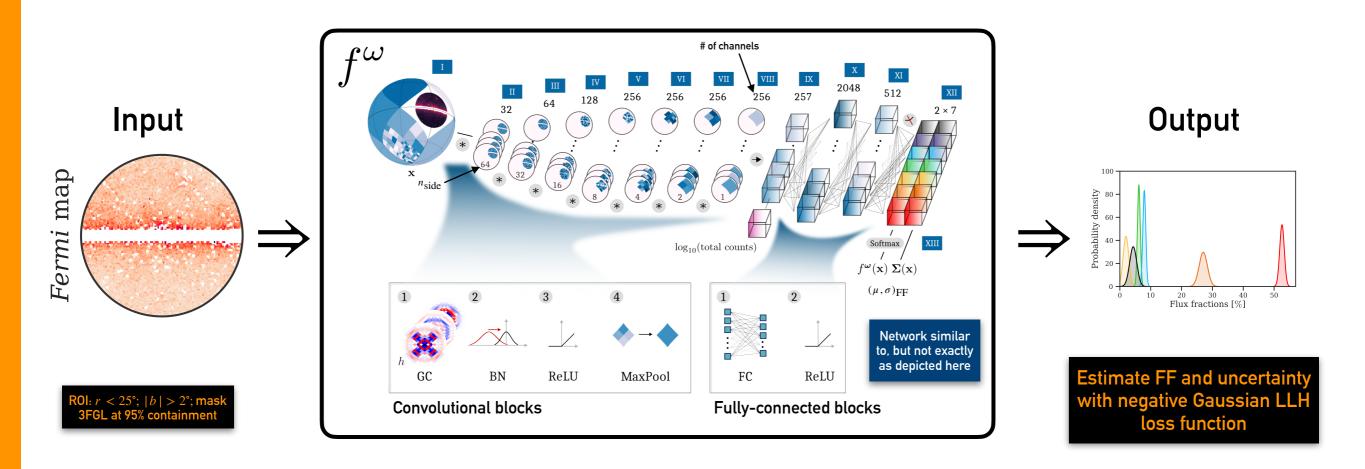


Image from [List, NLR, Lewis, Bhat 2020], see there for network details We add 1 layer, as begin with $n_{\rm side} = 256$

Nick Rodd \mid A ML approach to the GCE

Step 1: estimate template flux fractions

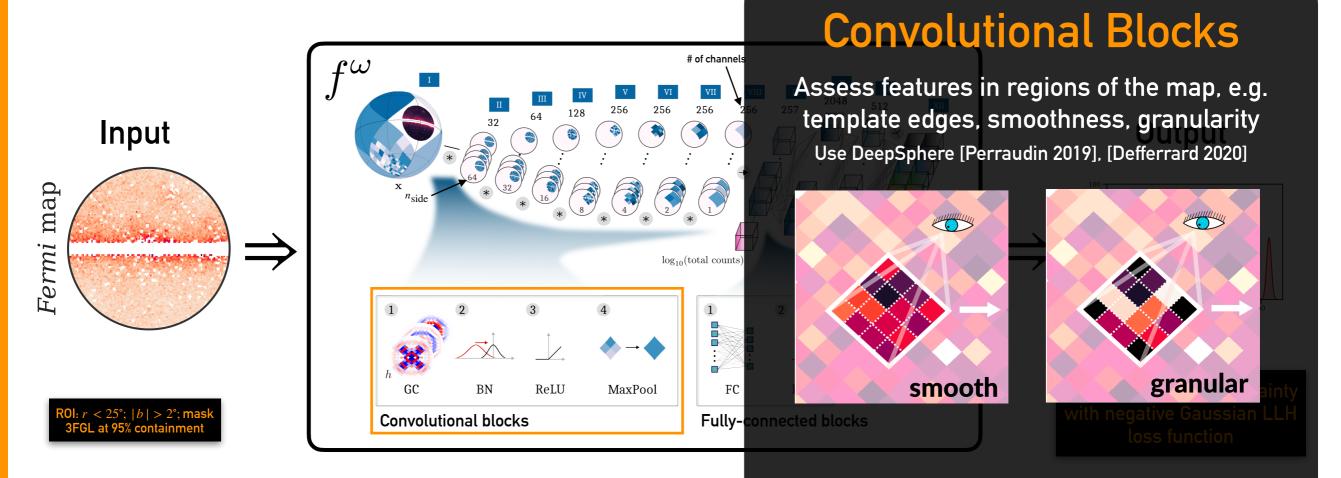


Image from [List, NLR, Lewis, Bhat 2020], see there for network details We add 1 layer, as begin with $n_{\rm side} = 256$

Nick Rodd \mid A ML approach to the GCE

Step 1: estimate template flux fractions

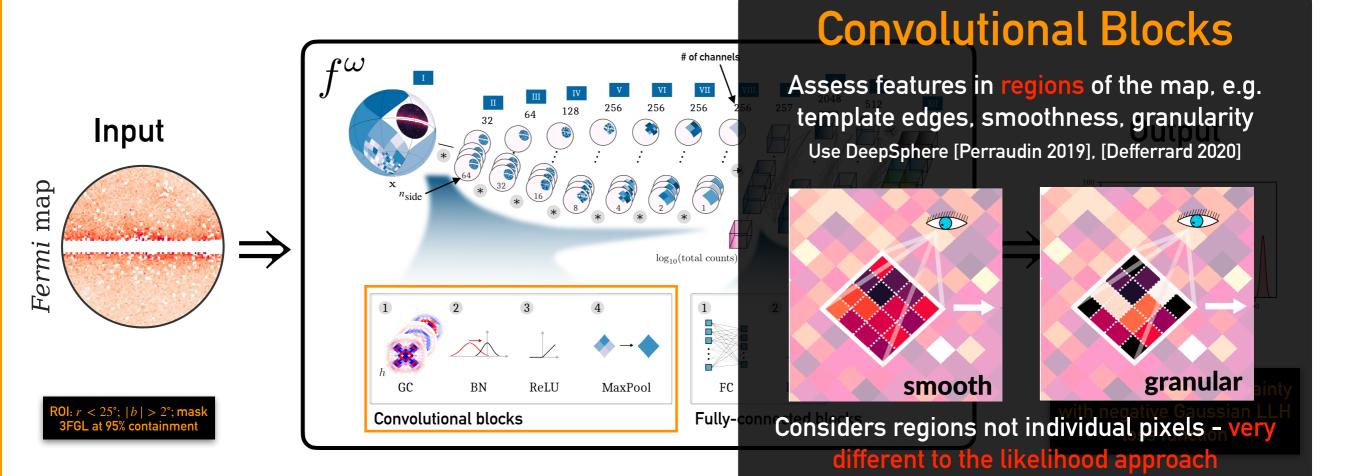


Image from [List, NLR, Lewis, Bhat 2020], see there for network details We add 1 layer, as begin with $n_{\rm side} = 256$

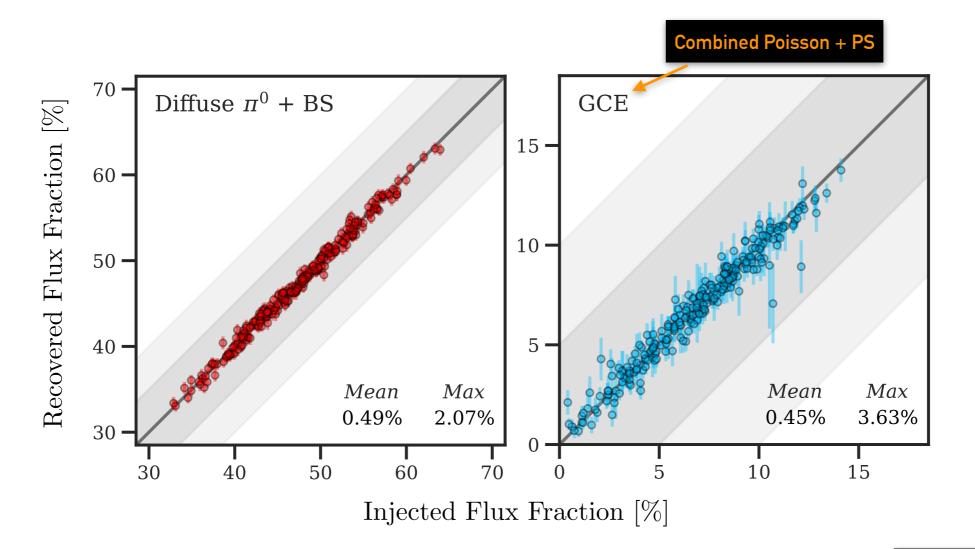
Nick Rodd | A ML approach to the GCE

[List, NLR, Lewis 2021]

E.g. does not reconstruct a template asymmetry

as evidence for point sources

Step 1: results in simulated data



Not shown: estimates for diffuse IC, isotropic, Fermi bubbles, and disk

Step 2: estimate GCE & disk *dN/dF* (SCD)

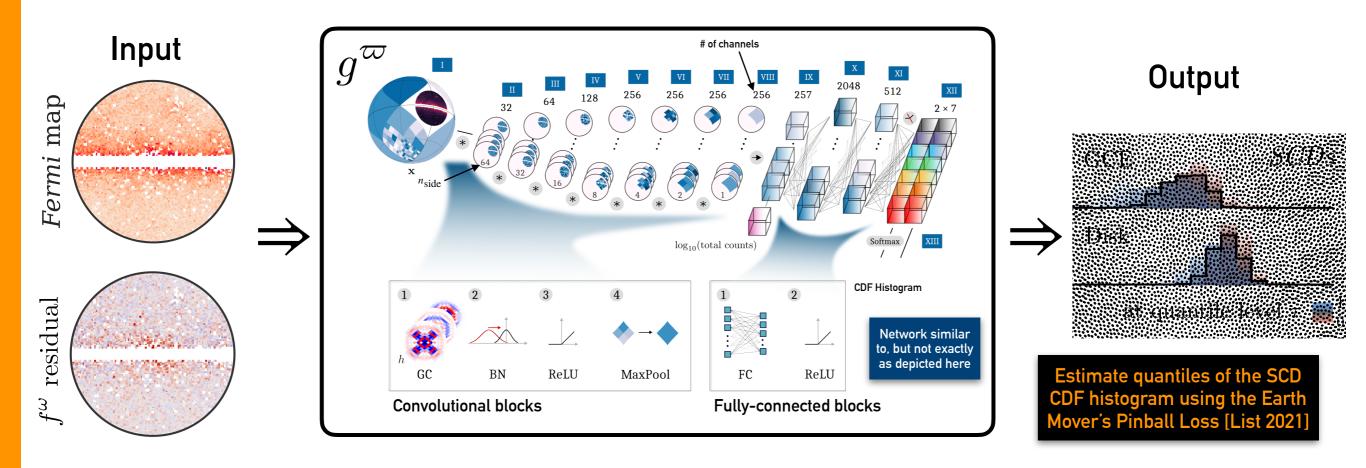
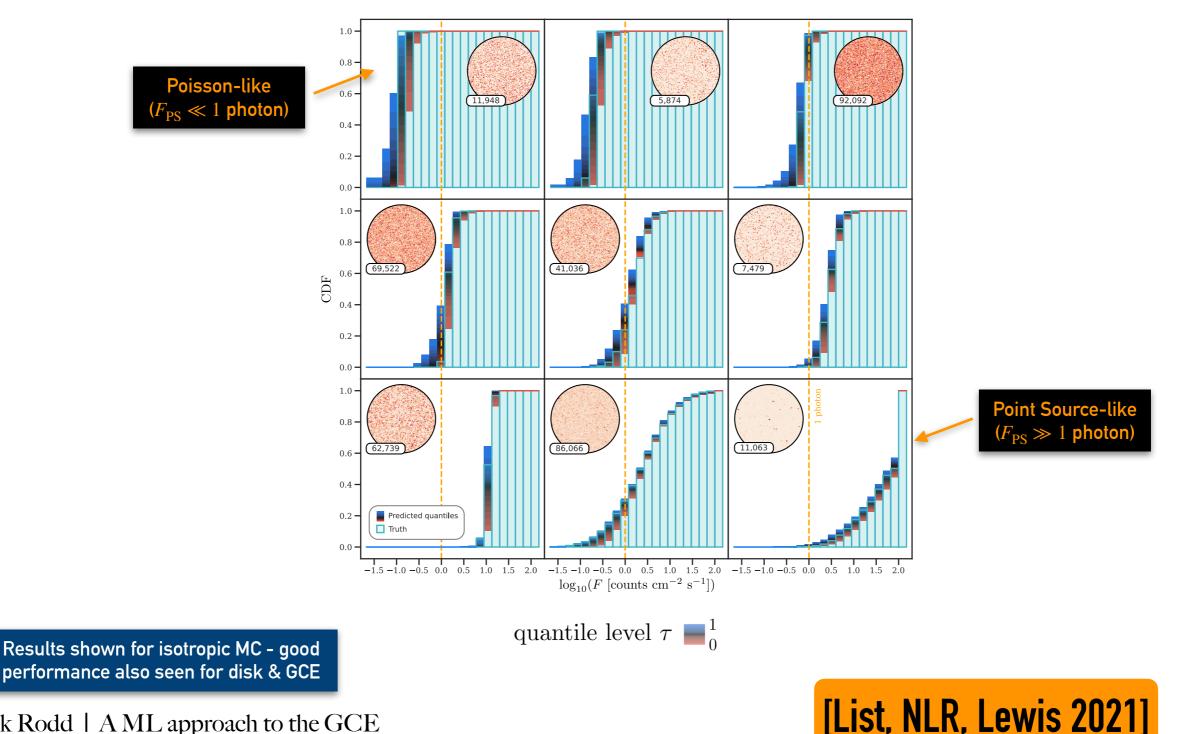


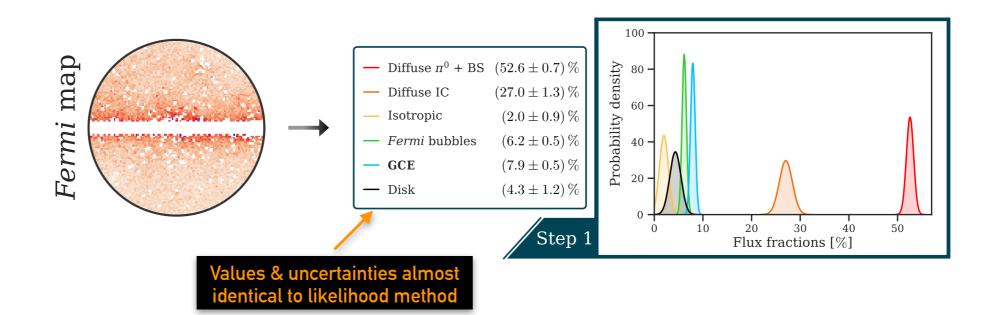
Image from [List, NLR, Lewis, Bhat 2020], see there for network details We add 1 layer, as begin with $n_{\rm side} = 256$

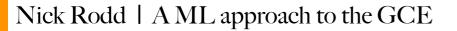
Nick Rodd \mid A ML approach to the GCE

Step 2: results in simulated data

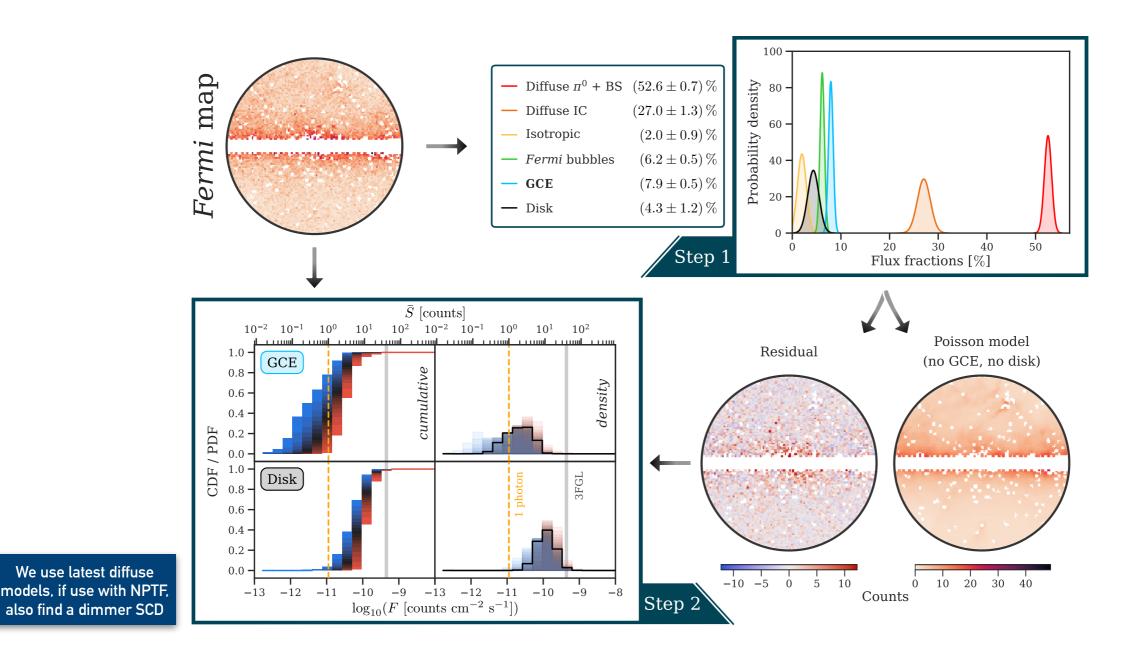


A MACHINE LEARNING APPROACH Results





A MACHINE LEARNING APPROACH Results



 $\begin{array}{l} \mathsf{SCD} \Rightarrow N_{\mathrm{PS}} \sim 3 \times 10^4 \\ (100\% \ \mathsf{PSs}) \ \mathsf{or} \ \sim 6 \times 10^3 \\ (\text{brightest } 50\% \ \mathsf{PSs}) \\ \mathsf{Consistent with recent} \\ \mathsf{MSP population studies} \\ \mathsf{e.g.} \ [\mathsf{Gonthier}+\ 2018], \\ [\mathsf{Ploeg}+\ 2020] \end{array}$

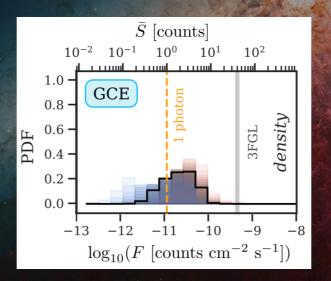
Much dimmer GCE SCD than previous results

Consistent with no more than 66% Poisson emission (determined with a 3rd NN)

Conclusion

Existing GCE analyses are not optimal: room for ML

CNN finds a much dimmer source-count distribution



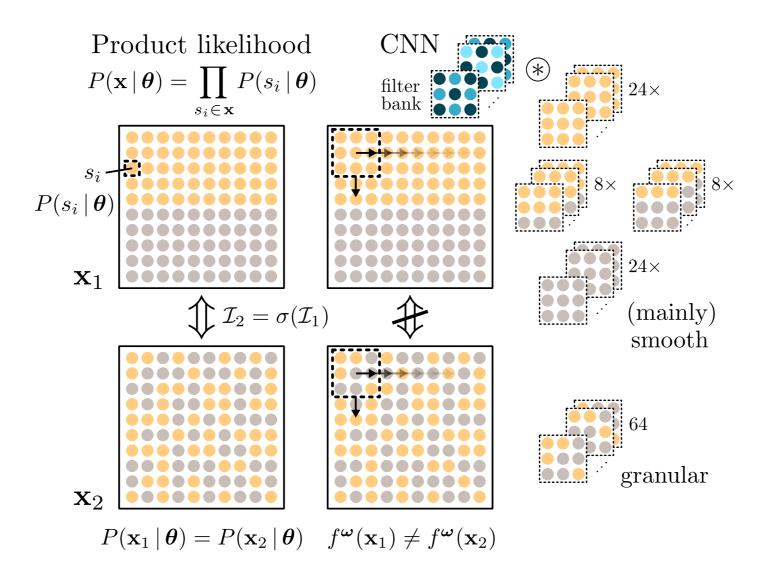
Significant scope to expand and explore ML methods

NICK RODD | PANIC 2021 | 5 SEPTEMBER 2021

Backup Slides

A MACHINE LEARNING APPROACH

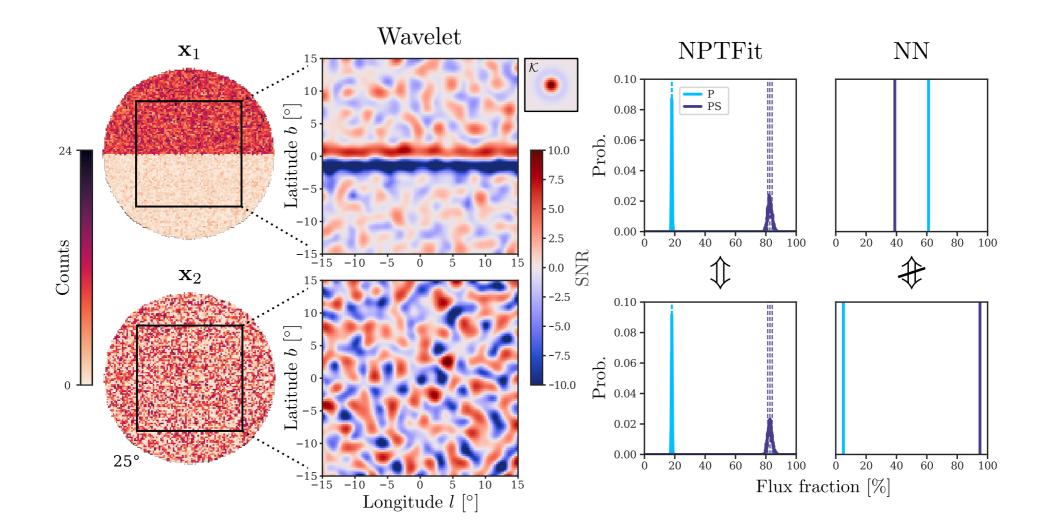
How can the NPTF reconstruct an asymmetry as PSs, but the CNN not?



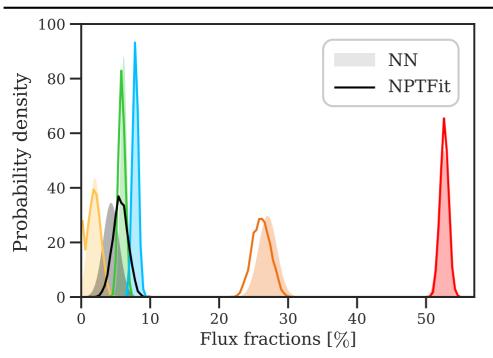
Nick Rodd | A ML approach to the GCE

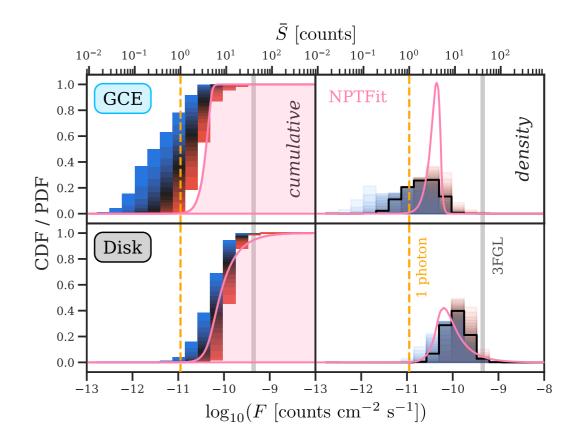
A MACHINE LEARNING APPROACH Likelihood vs CNN

How can the NPTF reconstruct an asymmetry as PSs, but the CNN not?

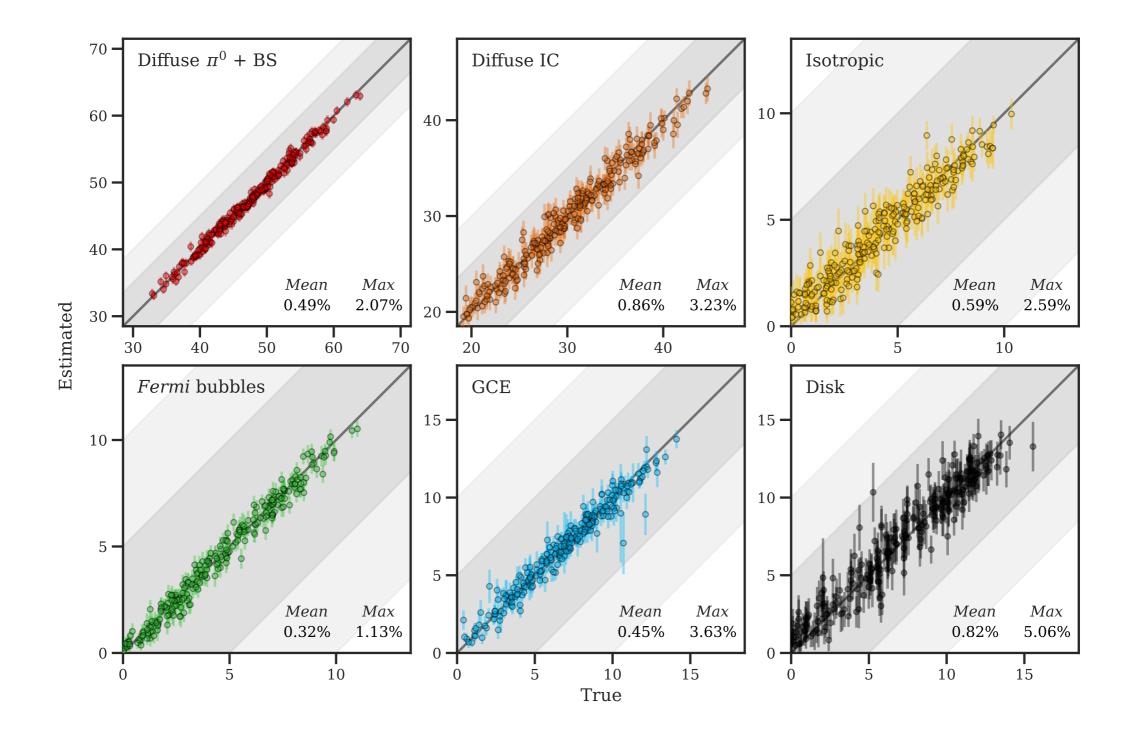


	NN	NPTFit
- Diffuse π^0 + BS	$(52.6\pm0.7)\%$	$(52.6\pm0.6)\%$
— Diffuse IC	$(27.0 \pm 1.3)\%$	$\left(26.1^{+1.4}_{-1.3} ight)\%$
— Isotropic	$(2.0\pm 0.9)\%$	$\left(1.8^{+1.0}_{-1.1} ight)\%$
— <i>Fermi</i> bubbles	$(6.2 \pm 0.5)\%$	$\left(5.9{}^{+0.5}_{-0.4} ight)\%$
— GCE	$(7.9 \pm 0.5)\%$	$(7.9 \pm 0.4)\%$
— Disk	$(4.3 \pm 1.2) \%$	$(5.7 \pm 1.1) \%$



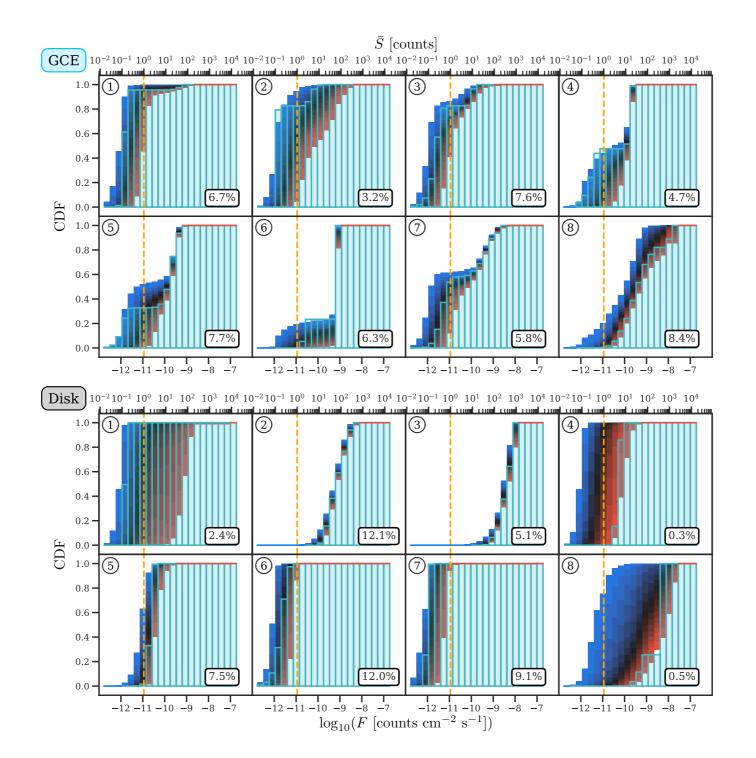


Step I: Performance on MC



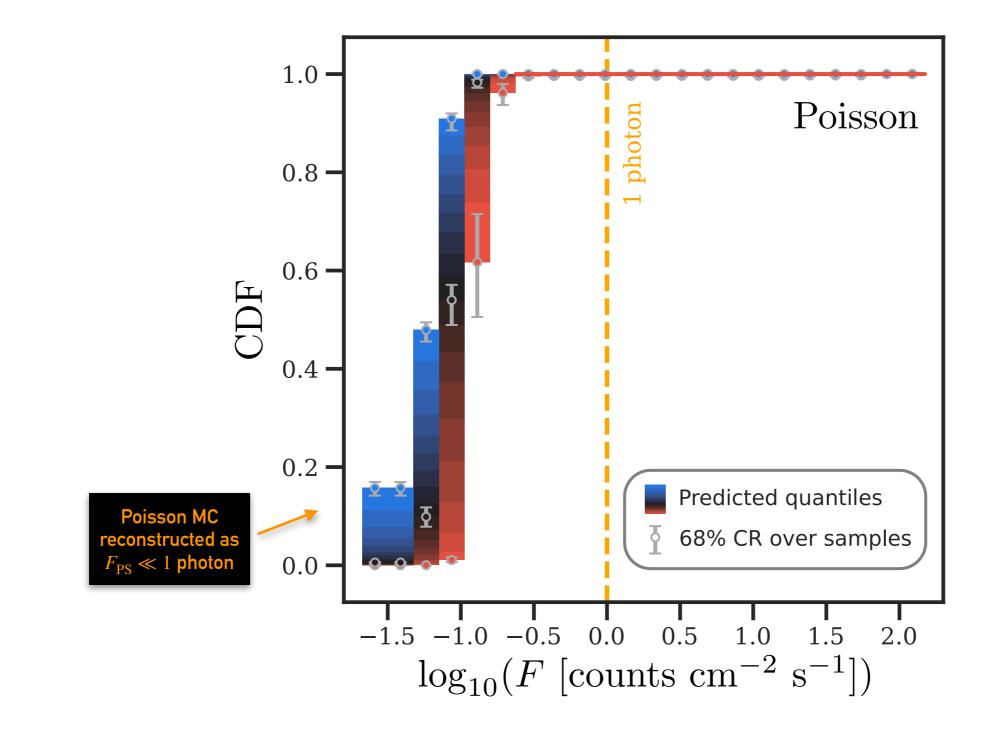
Nick Rodd | A ML approach to the GCE

Step 2: Performance on MC



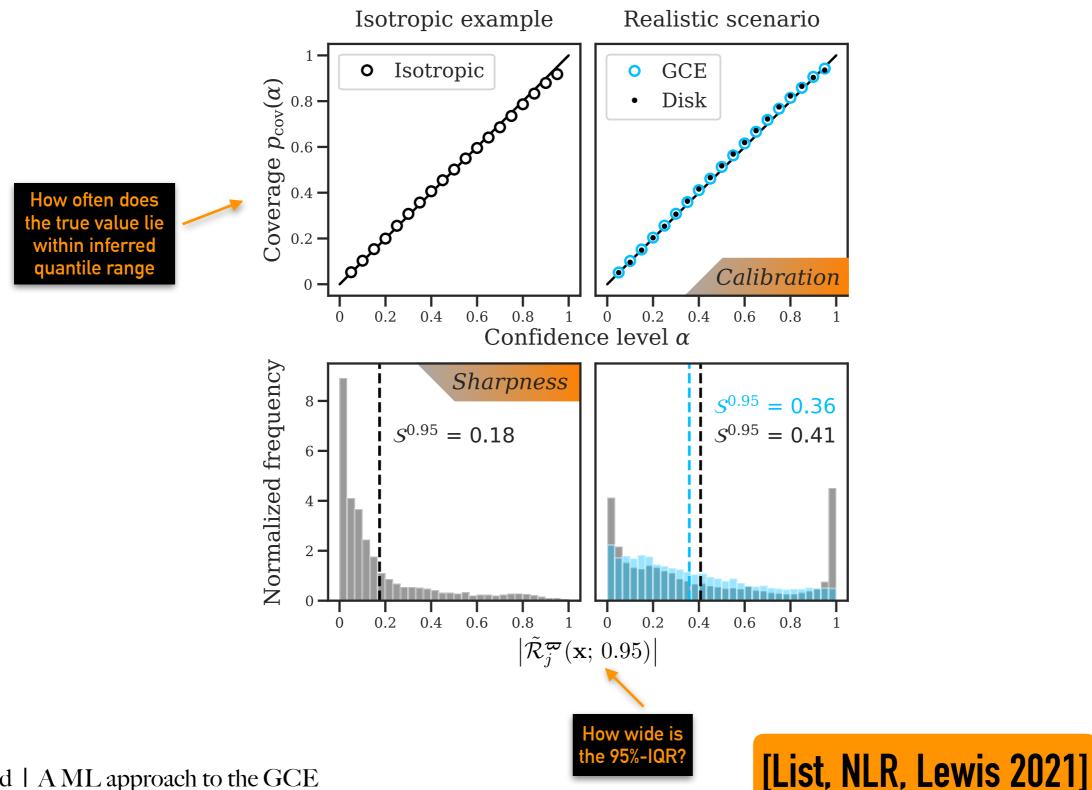
Nick Rodd | A ML approach to the GCE

Step 2: Poissonian MC

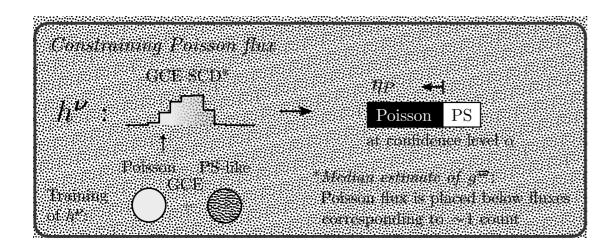


41

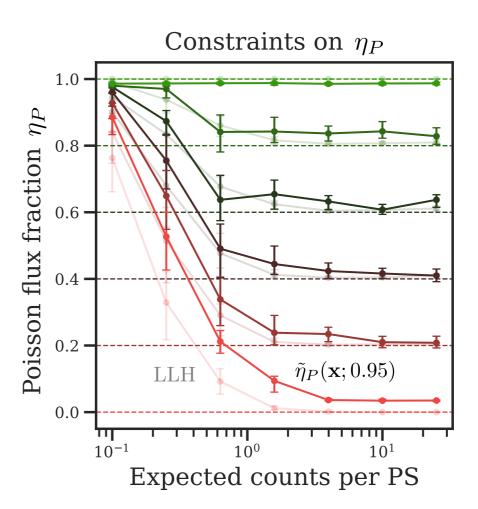
A MACHINE LEARNING APPROACH Step 2: Calibration



Step 3: Constraining η_P

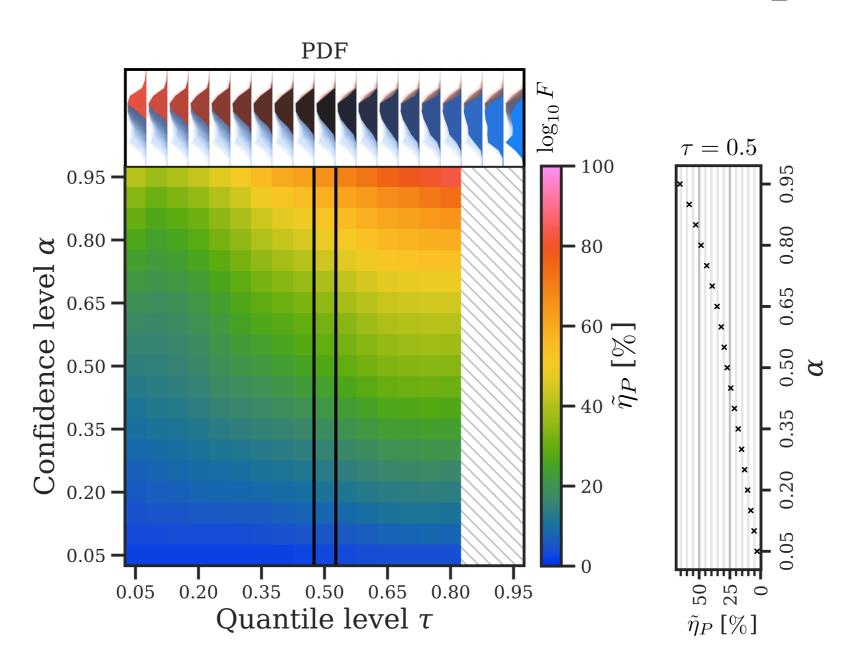


Bright PSs are inconsistent with Poisson emission Can constrain the Poisson flux fraction η_P from the data



Performance in isotropic MC with no PSF (where LLH approach is correct)

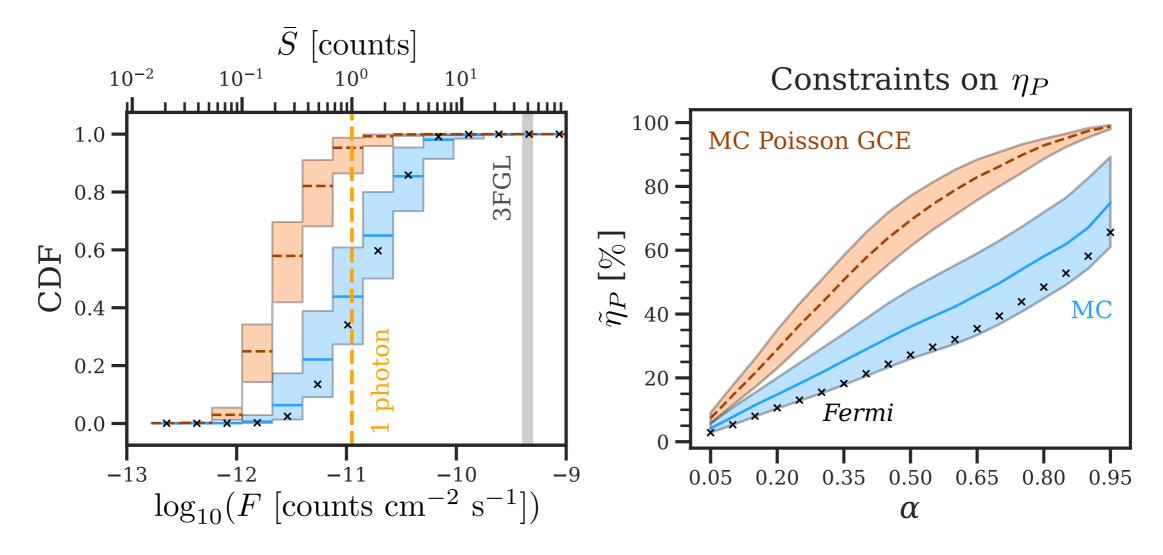
Step 3: Constraining η_P



In the Fermi data: at 95% C.L. η_P < 66%

44

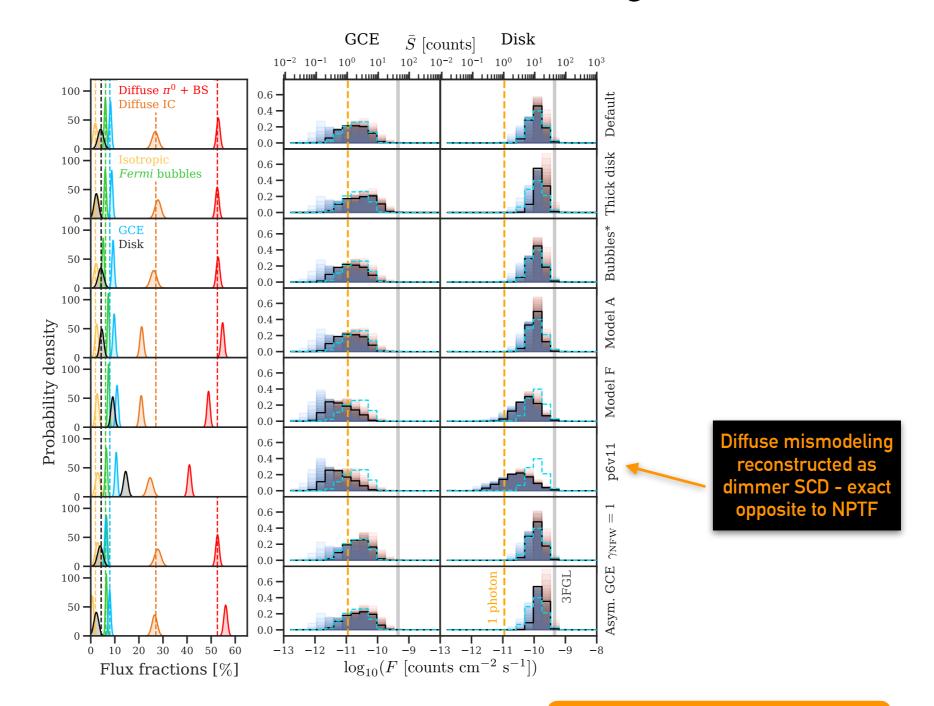
Are the data results consistent with the equivalent MC predictions?



 \times : results from the real Fermi data

Systematic Checks

Performance with mismodeling

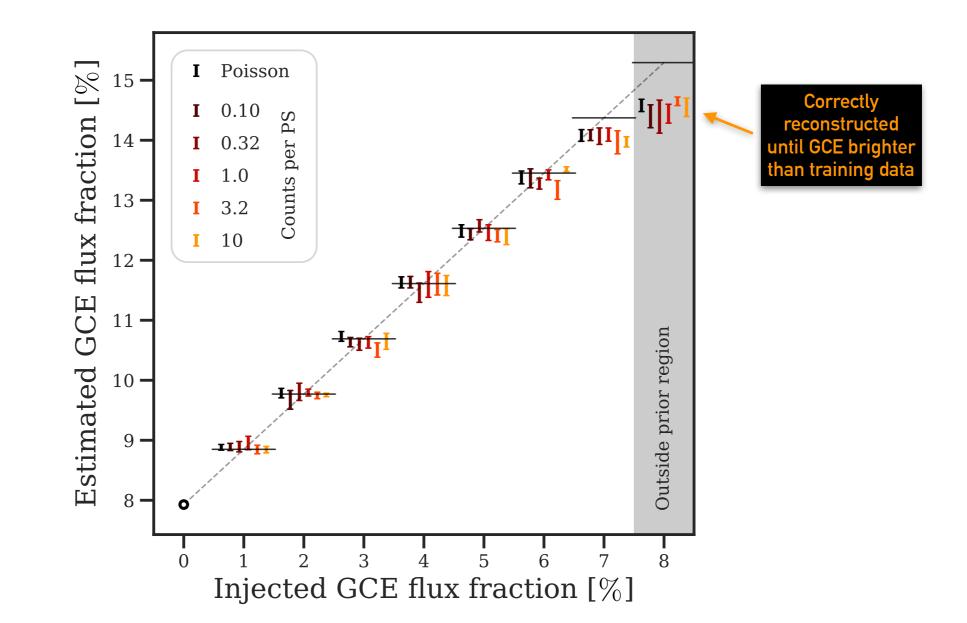


Nick Rodd | A ML approach to the GCE

[List, NLR, Lewis 2021]

CERN

Systematic Checks

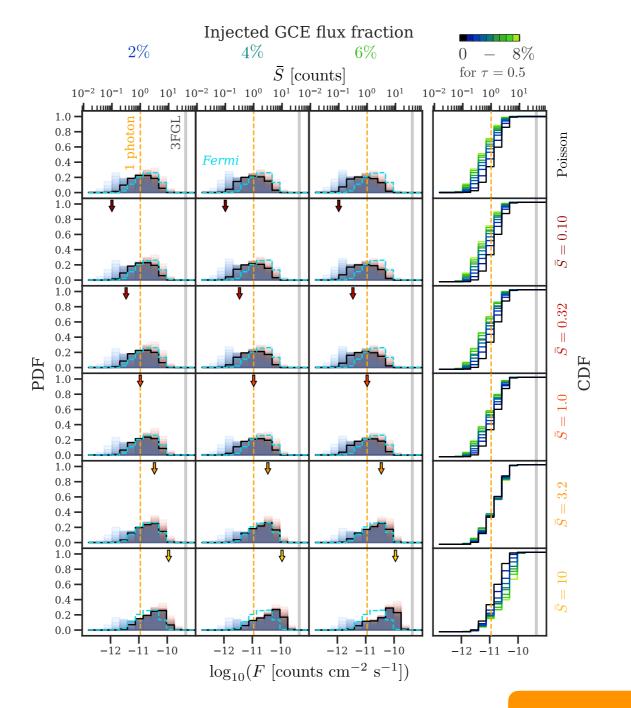


Nick Rodd | A ML approach to the GCE

[List, NLR, Lewis 2021]

ERI

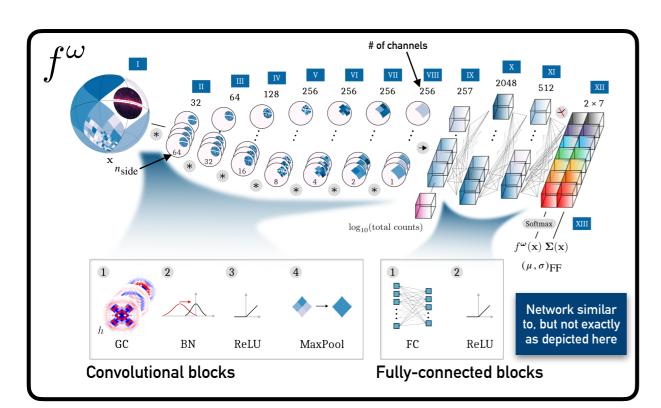
Systematic Checks



Nick Rodd | A ML approach to the GCE

ERN

Network parameters



Layer	Operations	Output shape	Output $n_{\rm side}$	Trainable parameters
I	Input map (normalized)	$30,805 \times 1$	256	_
II	ConvBlock	$8,117 \times 32$	128	160 + 32
III	ConvBlock	$2,199 \times 64$	64	10,240 + 64
IV	ConvBlock	598×128	32	40,960 + 128
V	ConvBlock	164×256	16	$163,\!840 + 256$
VI	ConvBlock	50×256	8	327,680 + 256
VII	ConvBlock	14×256	4	$327,\!680 + 256$
VIII	ConvBlock	4×256	2	$327,\!680 + 256$
IX	ConvBlock	1×256	1	327,680 + 256
Х	Append $\log_{10}(S_{\text{tot}})$	1×257		_
XI	ReLU o FC	$1 \times 2,048$		526,336 + 2,048
XII	$ReLU \circ FC$	1×512		1,048,576+512
XIII	Reshape \circ FC	2×6		6,144 + 0
XIV	Softmax (means only)	2×6		_
				3,111,040

g^{ϖ} (map \rightarrow SCD histograms):

Layer	Operations	Output shape	Output $n_{\rm side}$	Trainable parameters
I	Input map (normalized)	$30,805 \times 2$	256	_
II	ConvBlock	$8,117 \times 32$	128	320 + 32
III	ConvBlock	$2,199 \times 64$	64	10,240 + 64
IV	ConvBlock	598×128	32	40,960 + 128
V	ConvBlock	164×256	16	$163,\!840+256$
VI	ConvBlock	50×256	8	$327,\!680+256$
VII	ConvBlock	14×256	4	$327,\!680+256$
VIII	ConvBlock	4×256	2	$327,\!680 + 256$
IX	ConvBlock	1×256	1	327,680 + 256
Х	Append $\log_{10}(S_{\text{tot}})$	1×257		_
XI	Append τ	1×258		_
XII	$ReLU \circ FC$	$1 \times 2,048$		528,384 + 2,048
XIII	$ReLU \circ FC$	1×512		1,048,576+512
XIV	Reshape \circ FC	2×22		22,528 + 0
XV	Normalized softplus	2×22		- -
				3,129,632

h^{ν} (GCE SCD histogram \rightarrow Poissonian flux fraction η_P):

Layer	Operations	Output shape	Trainable parameters
I	Input histogram	22	_
II	Append α	23	_
III	$ReLU \circ FC$	256	5,888 + 256
IV	$\mathrm{ReLU} \mathrel{\circ} \mathrm{FC}$	256	65,536 + 256
V	Sigmoid \circ FC	1	256 + 1
			72,193

