Flavour physics at FCC-ee

Donal Hill* (EPFL)

8/9/21

22nd Particles and Nuclei International Conference

^{*} with thanks to Y. Amhis, C. Helsens, S. Monteil, O. Sumensari, G. Wilkinson

Introduction

- Flavour physics measurements have played a major role in the construction of the Standard Model
- Now complete, the SM poses several questions that are closely related to flavour:
 - Why three fermion generations, and why the particular mass hierarchy and CKM structure?
 - What additional sources of *CP* violation are there beyond the SM to explain the matter-dominated universe?
- Flavour is a powerful tool for discovery, since <u>loop amplitudes</u> contributing to many processes provide natural entry points for new massive particles
 - + Flagship experiments: LHCb at the LHC, and Belle II $e^+e^- \Upsilon(4S)$

Looking to the future: FCC-ee

- An e^+e^- facility such as FCC-ee operating at the Z-pole can combine most advantages of LHCb and Belle II [arXiv:2106.01259]
- Huge luminosity can counter low cross-section, and deliver $5\times 10^{12}~Z^{0}{\rm 's}$
 - $\cdot \ b ar{b}$ sample 15 times larger than Belle II, with all *b*-hadron types
 - Very large prompt charm and τ samples also anticipated FCC-ee is expected to have unparalleled reach in τ measurements
- Collect data at several collision energies: CKM measurements with $10^8~{\rm on}\mbox{-shell}~W^+W^-$ production

Feature	Belle II $\Upsilon(4S)$	LHCb	FCC-ee Z-pole	
All hadron species		\checkmark	\checkmark	
High boost		\checkmark	\checkmark	
Large production cross-section		\checkmark		
Negligible trigger loss	\checkmark		\checkmark	
Low combinatorial bkg.	\checkmark		\checkmark	
Initial energy knowledge	\checkmark		(\checkmark)	

Flavour landscape at the dawn of FCC-ee

- LHCb Upgrade II at HL-LHC during 2030s
 - $\cdot \,$ 300 fb^{-1} envisaged, 50 times higher statistics than Run 1 + 2 LHCb measurements
 - ATLAS and CMS will also continue to contribute strongly in areas such as $B^0_{(s)} \to \mu^+\mu^-$ and ϕ_s
- \cdot 50 ab⁻¹ anticipated from Belle II by 2031
- Advances in theory e.g. lattice QCD calculations also anticipated
 - In tandem with LHCb and Belle II results, expect excellent precision on CKM parameters and suppressed flavour-changing neutral-current (FCNC) processes
- What can FCC-ee bring at this point?

$C\!P$ violation - CKM and ϕ_s

- CKM angles and weak mixing phase ϕ_s can be measured with similar or better precision than previous experiments [Eur. Phys. J. C 79 (2019) 474]
- Exploit modes with neutrals that have poor reconstruction efficiency at LHCb, with a much larger sample size than Belle II
- Access wide range of charm modes in time-integrated $B^{\pm} \rightarrow D^{(*)} K^{\pm}$ decays
 - SM tree-level γ can be measured with < 10^{-6} theoretical uncertainty
- Time-dependent modes such as $B_s^0 \to D_s^- K^+$ can benefit greatly from much higher tagging efficiency than at LHCb
 - Access to $2\beta_s$, which can be compared to NP-sensitive ϕ_s

CP violation - $|V_{cb}|$ and $a_{sl}^{d,s}$

- Sides of CKM Unitarity Triangle are normalised to $|V_{cb}|$, and knowledge of this parameter will limit NP sensitivity of LHCb and Belle II results
- W⁺W⁻ run at FCC-ee using b-tagged and c-tagged jets can improve |V_{cb}| by an order of magnitude [arXiv:1306.6327]
- Charge asymmetry $a_{sl}^{d,s}$ in flavour-specific semileptonic neutral *B* decays are small $(10^{-4} - 10^{-5})$ and precisely known in SM
 - Sensitive to NP contributions through mixing box diagrams
 - LHCb expects to reach $\sigma_{stat} \sim 10^{-4}$, but systematics from production and detection asymmetries extremely difficult to control at this level
 - Solenoidal FCC-ee detector can reach total uncertainty of $\mathcal{O}(10^{-5})$ [arXiv:2106.01259]

Rare FCNC processes - $B^0 \rightarrow \mu^+ \mu^-$

- Very rare decay ($\mathcal{B} = 1.07 \times 10^{-10}$ in SM) which is sensitive to NP contributions
- \cdot Not observed yet, but ${\mathcal B}$ measurements by LHC experiments
- Recent LHCb limit $\mathcal{B} < 2.6 \times 10^{-10}$ at 95% C.L. [arXiv:2108.09284]
 - Limit is consistent with SM, but theory error is 0.1×10^{-10} [arXiv:1208.0934]
- + Well-motivated to push for observation and ~ $10\%~\mathcal{B}$ precision

Rare FCNC processes - $B^0 \rightarrow \mu^+ \mu^-$

- With $5\times 10^{12}~Z^{0}{'\rm s}$ at FCC-ee, expect around 500 $B^0_s\to \mu^+\mu^-$ and 70 $B^0\to \mu^+\mu^-$
- Superb mass resolution to clearly resolve the B_s^0 and B^0 signals, while e^+e^- environment results in negligible combinatorial background
 - $\pi \to \mu$ misidentification must be minimised with <u>excellent PID</u> to control $B^0 \to \pi^+\pi^-$ background
- $\cdot \ B^0/B^0_s$ ratio offers a powerful test of minimal flavour violation

Rare FCNC processes - $B^0 \rightarrow K^{*0} \tau^+ \tau^-$

- Tauonic equivalent of $B^0 \to K^{*0}\ell^+\ell^-$, critical to fully explore the $b \to sll$ lepton universality picture
 - + $\mathcal{B} \sim 10^{-7},$ but rate and angular properties can be strongly altered by NP contributions
- By using $\tau \to 3\pi\nu$ decays, can constrain τ flight vectors and fully solve the system to reconstruct $m(B^0)$
- Approach requires high-precision vertex reconstruction superior to LHCb Upgrade II
 - Expected rate is too low for Belle II, unless very large NP enhancement

[Eur. Phys. J. C 79 (2019) 474]

Favoured modes that are experimentally challenging

- Fully leptonic *B* decays have reliable SM predictions, and are very sensitive to NP mediators such as charged Higgs or leptoquarks
 - Tauonic modes of particular interest, given that such NP will couple preferentially to third generation
- Belle II expected to measure $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau})$ with 5% precision (current precision is 22%)
- $B_c^+ \to \tau^+ \nu_{\tau}$ is also of great interest, since it involves the same vertex factors as $B \to D^{(*)} \tau^+ \nu_{\tau}$ and is less CKM-suppressed than $B^+ \to \tau^+ \nu_{\tau}$
 - No B_c^+ mesons produced at Belle II, and lack of reconstructed final state information renders a measurement impossible at LHCb

$B_c^+ \rightarrow \tau^+ \nu_{\tau}$ - FCC-ee or nothing

- Can use same $\tau^+ \rightarrow 3\pi\nu_\tau$ reconstruction techniques as $B^0 \rightarrow K^{*0}\tau^+\tau^-$ to measure $(B_c^+ + \tau^+)$ flight distance
 - + Highly suppress $B^+ \to \tau^+ \nu_\tau$ background since $\tau(B^+) > \tau(B_c^+)$
- Harness full event reconstruction and known centre-of-mass energy to measure missing momentum and reject background
- High purity final sample containing ~ 4000 $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ is achievable with 5 × 10¹² Z⁰'s
 - Constrain remaining $B^+ \rightarrow \tau^+ \nu_\tau$ from expected Belle II result
 - $\mathcal{B}(\mathbf{B}^+_{\mathbf{c}} \rightarrow \tau^+ \nu_{\tau})$ precision at the 4 – 5% level possible
 - Highly constraining for 2HDM and LQ models

[arXiv:2105.13330]

Detector considerations for heavy flavour

- Layouts considered thus far (such as IDEA) have been designed with higher-energy requirements in mind like Higgs programme
- With 4 IPs under consideration, a dedicated flavour experiment is possible and would diversify the FCC-ee detector attributes
 - $\cdot\,$ Design studies are now of high importance

Attribute	Some key applications	
High-precision vertexing	Crucial for modes exploiting $ au o 3\pi u$,	
	lifetime resolution in B^0_s mixing	
Particle ID	K vs. π for $C\!P$ violation studies,	
	hadron rejection in $B^0_{(s)} \rightarrow \mu^+ \mu^-$	
Calorimetry	π^0 reconstruction to surpass LHCb,	
	high resolution photons for $\tau^+ ightarrow \mu^+ \gamma$	

Summary

- FCC-ee represents a unique opportunity for flavour physics, with $5 \times 10^{12} Z^{0}$'s leading to high rates of heavy flavour production
- Physics reach competitive with LHCb and Belle II, and can extend well beyond for modes with neutrals and missing energy
- Performance studies are ongoing, and have shown promise for channels like $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ and $B^0 \rightarrow K^{*0} \tau^+ \tau^-$ which are impossible to measure elsewhere
- Dedicated design studies for flavour to be undertaken, covering areas such as vertexing, PID, and calorimetry
 - Stay tuned for more!

Backup

τ decays - $\tau^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \gamma$

- + $1.7 \times 10^{11} \ \tau^+ \tau^-$ pairs expected from $5 \times 10^{12} \ Z^0{\rm 's}$ at FCC-ee
 - + Perfect knowledge of both τ momenta at production
- + $\tau^+ \rightarrow \mu^+ \gamma$ is a lepton flavour violating decay with unobservable rate in SM
- NP scenarios predict it to have the highest B of all LFV modes [arXiv:0908.2381]
- Current best limits $\mathcal{B} < 4.4 \times 10^{-8}$ from B-factories
- Challenging due to lack of τ vertex (only one charged track) and presence of photon

τ decays - $\tau^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \gamma$

- Anticipate ~ 400 events with $5 \times 10^{12} Z^{0}$'s (prior to selection cuts)
- Observation possible down to 6×10^{-11} level, whereas Belle II projected upper limit is 10^{-9}
- Mass peak reconstruction has limited resolution due to lack of photon direction information (assumed to point to PV)
 - High-granularity calorimetry with good tower depth could open the possibility of photon direction measurements, and greatly improve the resolution

[D. Hill, FCC Workshop Nov. 2020]

$B_c^+ \rightarrow \tau^+ \nu_\tau$ NP sensitivity

- Can consider the ratio $R_c = \mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau})/\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})$, which has ~ 4% expected experimental precision
 - $\cdot |V_{cb}|$ independent
 - \cdot Can assume no NP in the muonic mode for theory calculation
- R_c measurement at FCC-ee can strongly constrain both 2HDM and leptoquark parameter space in a complementary manner to other key observables
 - Leptoquark couplings can cause $\mathcal{O}(10-100)$ variations!

