

Tile Calorimeter

- Central hadronic calorimeter of the ATLAS experiment at LHC at CERN — measurement of the energy and direction of particles and jets
- Sampling calorimeter steel absorber, plastic scintillators
- Scintillator signal \rightarrow wavelength-shifting fibers \rightarrow photomultiplier tubes (PMT)
- PMT signal \rightarrow two-gain electronics highgain & low-gain (precise energy measurement over a wide range)
- Signal amplitude and phase of physics events reconstructed using so-called Optimal Filtering algorithm (OF)
- Calorimeter cell usually 2 PMTs (channels) on both sides of the module, \sim 5000 cells in total

Calibration & Monitoring

- Time calibration necessary for energy reconstruction (OF depends on time constants), background removal, ToF measurement
- Goal: particle traveling at the speed of light from the ATLAS interaction point generates a signal with the time phase equal to zero
- Final time calibration using *pp* collision data

Time resolution

- Only cells belonging to reconstructed jets are considered
- Gaussian fit of the reconstructed cell time for each energy bin — time resolution = σ (closed circles)
- Open squares = underlying time distributions RMS
- RMS > σ because of out-of-time pileup (LHC proton bunch-crossings every 25 ns)
- Resolution gets better with increasing cell energy (approaches 0.4 ns for high cell energies)

Time calibration and monitoring in the ATLAS Tile Calorimeter

Stanislav Poláček (IPNP, Charles University), on behalf of the ATLAS Tile Calorimeter System

PANIC Conference, 5-10 September 2021

Timing jumps

• Timing jump = sudden change in the time settings in a group of usually six channels caused by faulty electronics

• Problem primarily monitored using the laser-in-

tool

Bunch-crossing offset

• Bunch-crossing offset (BCO) = simultaneous shift of timing in a group of 3 channels by 1 or 2 bunchcrossings caused by faulty electronics • Intermittent problem — usually about 1% of

- events
- First observed in laser-in-gap events (Fig. 5), also seen in physics events (Fig. 6)
- Affected channels identified using laser-in-gap

References

[1] ATLAS Collaboration. Operation and performance of the ATLAS Tile Calorimeter in Run 1. *The European Physical Journal C*, 78(12), Nov 2018. [2] T. Davídek. ATLAS Tile Calorimeter time calibration, monitoring and performance. *Journal of Physics: Conference Series*, 928:012003, Nov 2017. [3] Tile Calorimeter public plots. *https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TileCaloPublicResults*.

gap events (Fig. 3), later confirmed in the physics events (Fig. 4)

• Correction of corresponding time constants \rightarrow jump disappears in both laser and physics plots

• Software tool (based on physics data) for identification of events with BCO \rightarrow masking corresponding channels in affected events

• Physics plot — comparison of data processed with (Corrected) and without (Original) the software

• Tool significantly reduces events close to +25 ns • Tool used for the Run-2 data reprocessing