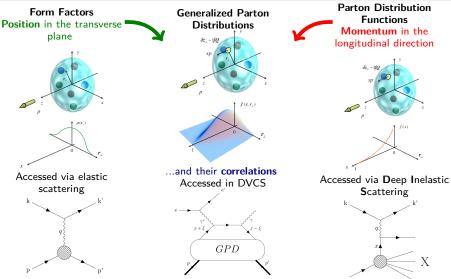
First-time measurement of Timelike Compton Scattering with the CLAS12 detector at JLab

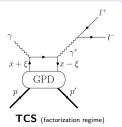
Based upon e-print arXiv:2108.11746

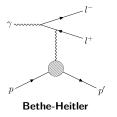
Pierre Chatagnon, for the CLAS Collaboration

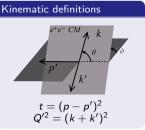
IJCLab (France), now INFN Genova (Italy)


chatagnon@ipno.in2p3.fr 🗹 /pchatagnon@ge.infn.it 🖸

5th September 2021 - Online


The Generalized Parton Distributions


Understanding the inner structure of nucleons is challenging → Perturbative formalism not applicable to QCD at low energies



Timelike Compton Scattering

DVCS:
$$ep \rightarrow e'p'\gamma$$
 TCS: $\gamma p \rightarrow e^+e^-p'$

- BH cross section only depends on electromagnetic FFs $\sigma_{BH} >> \sigma_{TCS}$ at JLab energies
- Unpolarized interference cross section Berger, Diehl, Pire, Eur.Phys.J.C23:675-689,2002 ☐

$$rac{d^4\sigma_{INT}}{dQ'^2dtd\Omega} \propto \left[\cos(\phi) rac{1+\cos^2(heta)}{\sin(heta)}
ight] rac{ ext{Re} ilde{ extbf{M}}^{--}}{ ext{Re} ilde{ extbf{M}}^{--}} + ...
ight]$$

$$\rightarrow \tilde{M}^{--} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[F_1 \mathcal{H} - \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

Polarized interference cross section

$$\frac{d^4\sigma_{\mathit{INT}}}{dQ'^2dtd\Omega} = \frac{d^4\sigma_{\mathit{INT}}\mid_{\mathrm{unpol.}}}{dQ'^2dtd\Omega} - \nu \cdot A \left[\frac{L_0}{L}\right] \left[\sin(\phi)\frac{1+\cos^2(\theta)}{\sin(\theta)}\right] \mathrm{Im}\tilde{\textit{M}}^{--} + ... \right]$$

Both $Im \mathcal{H}$ and $Re \mathcal{H}$ can be accessed by TCS

Motivations to measure TCS

Test of universality of GPDs

Motivations

- TCS is parametrized by GPDs
- Comparison between DVCS and TCS results allows to test the universality of GPDs
- \bullet TCS does not involve Distribution Amplitudes unlike Deeply Virtual Meson Production \to direct comparison between DVCS and TCS

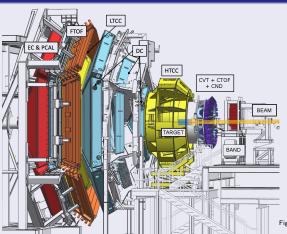
Real part of CFFs and nucleon D-term

- ullet As for DVCS, TCS unpolarized cross section is sensitive to ${
 m Re}{\cal H}$, which is still not well constrained by existing data.
- The CFFs dispersion relation at leading order and leading twist :

$$\operatorname{Re}\mathcal{H}(\xi,t) = \mathcal{P}\int_{-1}^{1} dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) \operatorname{Im}\mathcal{H}(\xi,t) + \Delta(t)$$

• $\Delta(t)$ can be related to the Energy-Momentum FF $D^Q(t)$, itself related to mechanical properties of the nucleon.

$$\Delta(t) \propto D^Q(t) \propto \int d^3 \mathbf{r} \; p(r) rac{j_0(r\sqrt{-t})}{t}$$


Review in Polyakov, Schweitzer, International Journal of Modern Physics A, 2018

M.V. Polyakov. Generalized parton distributions and strong forces inside nucleons and nuclei. PLB, 2003 🗹

V. D. Burkert, L. Elouadrhiri, and F. X. Girod. Nature 2018 Z

Experimental setup

CLAS12

Forward Detector (6 sectors)

- Torus magnet
 - Drift Chambers
- Forward Time-of-Flight
- Calorimeters (EC and PCAL)
- Cherenkov counters

Central Detector

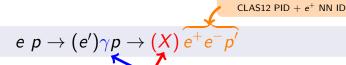
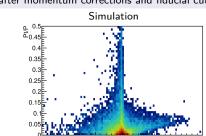

- Solenoid magnet
- Central Vertex Tracker (Silicon and micromegas)
- Central Time-of-Flight
- Central Neutron Detector

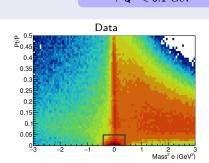
Figure in Burkert et al., NIM A, 2020 🗹

Data set used in this work

- Fall 2018 run period
- LH_2 target / 10.6 GeV polarized e^- beam
- Inbending torus magnetic field
- ullet Accumulated charge: ~ 150 mC (200 fb $^{-1}$)

Analysis strategy

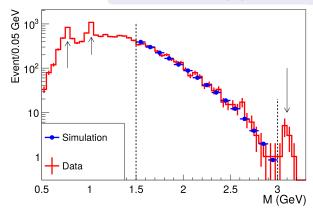

Exclusivity cuts


$$p_X = p_{beam} + p_{target} - p_{e^+} - p_{e^-} - p_{p'}$$

 $|M_X^2|<0.4~{\rm GeV^2}$

Quasi-real photoproduction $\frac{P_{t\chi}}{P_{\chi}} < 0.05$ $\rightarrow Q^2 < 0.1 \,\, \mathrm{GeV}^2$

after momentum corrections and fiducial cuts


Data/Simulation comparison

Phase space of interest

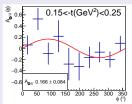
- \bullet 0.15 GeV² < -t < 0.8 GeV²
- 4 GeV $< E_{\gamma} < 10.6 \text{ GeV}$
- 1.5 GeV $< M_{a^+a^-} < 3$ GeV

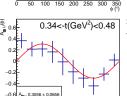
Observations

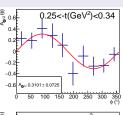
- Vector mesons peaks are visible in data: ω (770 MeV), ρ (782 MeV), Φ (1020 MeV) and J/ψ (3096 MeV)
- Data/simulation are matching at 15 % level, up to normalization factor. No evident high mass vector meson production (ρ (1450 MeV, 1700 MeV)

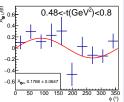
Observable 1: Photon polarization asymmetry $(A_{\odot U})$

Definition

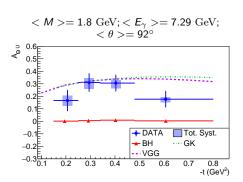

$$A_{\odot U} = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = \frac{-\frac{\alpha_{em}^{3}}{4\pi s^{2}} \frac{1}{-t} \frac{m_{p}}{Q'} \frac{1}{\tau \sqrt{1 - \tau}} \frac{L_{0}}{L} \sin \phi \frac{(1 + \cos^{2} \theta)}{\sin(\theta)} \frac{\text{Im} \tilde{\mathcal{M}}^{--}}{\text{d}\sigma_{BH}}}{d\sigma_{BH}}$$


Experimental measurement


- $A_{\odot U}(-t, E\gamma, M; \phi) = \frac{1}{P_b} \frac{N^+ N^-}{N^+ + N^-}$ where $N^{\pm} = \sum \frac{1}{A_{CC}} P_{trans}$.
- P_{trans.} is the transferred polarization from the electron to the photon, fully calculable in QED


Olsen, Maximon, Phys. Rev.114 (1959)

- P_b is the polarization of the CEBAF electron beam (85%)
- The ϕ -distribution is fitted with a sine function



$A_{\odot U}$ results

- First time measurement
- A sizeable asymmetry is measured (above the expected vanishing $A_{\odot U}$ of BH)

\rightarrow signature of TCS

- Theoretical predictions were provided by M. Vanderhaeghen, JGU Mainz (VGG model) and P.Sznajder, NCBJ Warsaw (GK model)
- Size of the asymmetry is well reproduced by VGG and GK models → model dependent hints for universality of GPDs

Observable 2: Forward-Backward asymmetry

 Use the different parity of the TCS and BH amplitudes under the inversion of the leptons directions

$$k \leftrightarrow k' \iff (\theta, \phi) \leftrightarrow (180^{\circ} - \theta, 180^{\circ} + \phi)$$

BH cross section

$$rac{d\sigma_{BH}}{dQ^2\,dt\,d\Omega} \propto rac{1+\cos^2 heta}{\sin^2 heta} \stackrel{FB}{\longrightarrow} rac{d\sigma_{BH}}{dQ^2\,dt\,d\Omega}$$

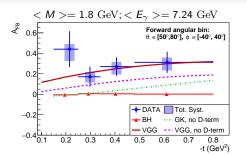
Int. cross section

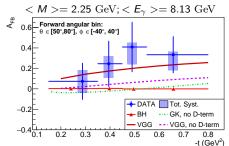
$$\frac{d\sigma_{BH}}{dQ^2\,dt\,d\Omega} \propto \frac{_{1+\cos^2\theta}}{\sin^2\theta} \stackrel{FB}{\longrightarrow} \frac{d\sigma_{BH}}{dQ^2\,dt\,d\Omega} \qquad \frac{d^4\sigma_{INT}}{dQ'^2dtd\Omega} \propto \frac{L_0}{L}\cos(\phi)\frac{_{1+\cos^2(\theta)}}{\sin(\theta)} \stackrel{FB}{\longrightarrow} -\frac{d\sigma_{INT}}{dQ^2\,dt\,d\Omega}$$

A_{FB} formula

$$A_{FB}(\theta_0, \phi_0) = \frac{d\sigma(\theta_0, \phi_0) - d\sigma(180^\circ - \theta_0, 180^\circ + \phi_0)}{d\sigma(\theta_0, \phi_0) + d\sigma(180^\circ - \theta_0, 180^\circ + \phi_0)} = \frac{-\frac{\alpha_{em}^2}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau \sqrt{1 - \tau}} \frac{L_0}{L} \cos \phi_0 \frac{(1 + \cos^2 \theta_0)}{\sin(\theta_0)} \frac{\text{Re}\tilde{\textbf{M}}^{--}}{\text{d}\sigma_{BH}(\theta_0, \phi_0) + d\sigma_{BH}(180^\circ - \theta_0, 180^\circ + \phi_0)}}$$

Integration over forward angular bin: $\theta \in [50^{\circ}, 80^{\circ}]/\phi \in [-40^{\circ}, 40^{\circ}]$


- Concept initially explored for J/Ψ production Gryniuk, Vanderhaeghen, Phys. Rev. D, 2016 .
- Exploratory studies for TCS performed alongside this work, during my thesis.
- Predictions for TCS have been published very recently + LO radiative correction negligible Heller, Keil, Vanderhaeghen, Phys. Rev. D, 2021 2.


A_{FB} results

- A_{FB} measured in two mass regions: $M \in [1.5 \text{ GeV}, 3 \text{ GeV}]$ and $M \in [2 \text{ GeV}, 3 \text{ GeV}]$
- The measured A_{FB} is non-zero: evidence for signal beyond pure BH contribution
- Three model predictions
 - 1 VGG without D-term
 - 2 VGG with D-term

D-term in Pasquini et al., Physics Letters B, 2014 Z

- 3 GK without D-term
- Measured asymmetry is better reproduced by the VGG model including the D-term in both mass bins
 - \rightarrow importance of the D-term in the parametrization of GPDs
 - → TCS is a prime reaction to constrain the D-term

Conclusions

Takeaways

- TCS observables were measured for the first time
- Sizeable $A_{\odot U}$ (sensitive to Im $\mathcal H$) and A_{FB} (sensitive to Re $\mathcal H$) are clear signatures of TCS
- The results obtained allow to draw physical conclusions:
 - the $A_{\bigcirc U}$ is well reproduced by models that reproduce existing DVCS data \rightarrow hints for **universality of GPDs**
 - the Forward/Backward asymmetry appears to be better reproduced by model with a D-term
 - \rightarrow promising path to the measurement of the D-term
 - → access to the mechanical properties of the proton

Opportunities ahead to measure TCS:

- EIC, Ultra-peripheral collisions (LHC) → test QCD NLO corrections Mueller Pire. Szymanowski, Wagner. PRD. 2012 ☑
- CLAS12 high lumi/high energy upgrades → improve constraints on D-term

E-print: arXiv:2108.11746 ☑, submitted on 26th August 2021.
Article: submitted to PRL on the 31st August 2021

Back Up

TCS measurement with CLAS12 13/4

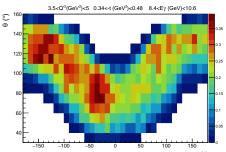
Acceptance

Acceptance calculation using BH-weighted events

$$Acc_{\mathcal{B}} = \frac{N_{\mathcal{B}}^{REC}}{N_{\mathcal{B}}^{GEN}}$$

$$N_{\mathcal{B}}^{REC} = \sum_{REC \in \mathcal{B}} Eff_{corr} w$$

$$N_{\mathcal{B}}^{GEN} = \sum_{GEN \in \mathcal{B}} w$$


Multidimensional binning of the acceptance

4 bins in -t, 3 bins in E_{γ} and Q'^2 , 10° x 10° bins in the ϕ/θ plane. Bins with $\frac{\Delta Acc}{Acc} > 0.5$ and Acc < 0.05 are discarded (ΔAcc is statistical error).

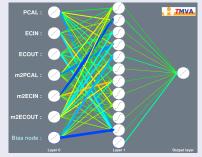
Efficiency corrections

- Data-driven correction for the proton detection efficiency derived using $ep \rightarrow e'\pi^+\pi^-(p')$ reaction
- Efficiency correction from background merging using random trigger events

Large region with no acceptance ($\phi\sim0^\circ/\theta\sim180^\circ$ and $\phi\sim180^\circ/\theta\sim0^\circ$)

TCS measurement with CLAS12 \$\phi\$ (°) 14/4

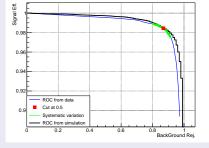
Positron identification


Above 4.5 GeV, the HTCC cannot distinguish positron from pions

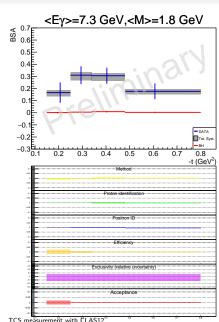
Signal: e^+ identified as e^+ Background: π^+ identified as e^+

Strategy and discriminating variables: take advantage of the ECAL segmentation

Positron: electromagnetic shower Pion: Minimum Ionizing Particle (MIP)


$$SF_{\mathrm{EC\ Layer}} = rac{E_{dep}(\mathrm{EC\ Layer})}{P} \qquad M_2 = rac{1}{3} \sum_{U,V,W} rac{\sum_{\mathrm{strip}} (x-D)^2 \cdot \ln(E)}{\sum_{\mathrm{strip}} \ln(E)} \rightarrow \mathbf{6} \text{ variables}$$

Output: Signal $\rightarrow 1$


Background $\rightarrow 0$

B/S from 50% to 5%

- Signal in data⇒ Outbending electrons
- ullet Background in data \Rightarrow $ep
 ightarrow e\pi^+_{PID=e^+_{15}}$ (

Systematics

Method

 Calculated from generated BH events, and full-chain simulated events.

Proton

• Apply χ^2 cut for the proton identification

Positron Identification

• Vary the positron ID cut (0.5 \pm 0.3; max. significance region)

Efficiency

Calculate observable with/without data-driven proton efficiency

Exclusivity cuts

• Vary the values of the exclusivity cuts: $\mid Pt/P\mid <0.05\pm0.01, \mid M_\chi^2\mid <0.4\pm0.1~{\rm GeV}^2$ Fully integrated relative uncertainty

Acceptance

- Calculate observable with acceptance produced using BH-weighted events or unity weights
- Neighboring bins uncertainties are averaged
- Then added in quadrature