Search for K⁺ decays to a charged lepton and invisible particles with

- The Kaon Factory @ CERN SPS -

Simone Schuchmann

Johannes Gutenberg University Mainz (Germany)

PANIC 21 Conference, Lisbon 08.09.2021

Content

 $K^+ \rightarrow \ell^+ + \text{invisible with NA62: search for new physics and particles beyond the Standard Model:}$

- > Heavy Neutral Lepton (HNL) searches:
 - $K^+ \rightarrow e^+ N$ and $K^+ \rightarrow \mu^+ N$ (N = HNL)
- > Related searches:
 - $K^+ \rightarrow \mu^+ \nu \nu \bar{\nu}$ versus $K^+ \rightarrow \mu^+ \nu X$
 - X = invisible scalar or vector hidden sector mediator
- > Results and prospects

Heavy Neutral Leptons (HNL)

- Heavy neutral leptons: three right-handed (sterile) neutrinos N_i are added to the Standard Model (SM), they mix with classical neutrinos:
 - $\nu_{\alpha} = \sum_{i=1}^{3+k} U_{\alpha i} \nu_i, \qquad (\alpha = e, \mu, \tau) \label{eq:nu_alpha}$ k=3
- to account for neutrino masses and oscillations, for the evidence of Dark Matter and for the baryon asymmetry of the universe.
- The neutrino minimal Standard Model extension (vMSM) considers mass ranges and couplings: ([Asaka, Blanchet, Shaposhnikov, PLB 631 (2005) 151])
 - N₁: m₁ ~ 10 keV dark matter candidate
 - N_{2.3}: m_{2.3} ~ 100 MeV 100 GeV
 - Yukawa couplings in the range 10⁻¹¹ to 10⁻⁶
- If HNLs exist, they would be produced in every process containing active neutrinos with a branching fraction proportional to the **mixing parameters** $|\mathbf{U}_{\ell 4}|^2$ (here considering k = 1).
- Masses of O(GeV) are observable at NA62 via Kaon decays: HNL production and decay searches.

HNL production in K⁺ decays

[R. Shrock, PLB96 (1980) 159]

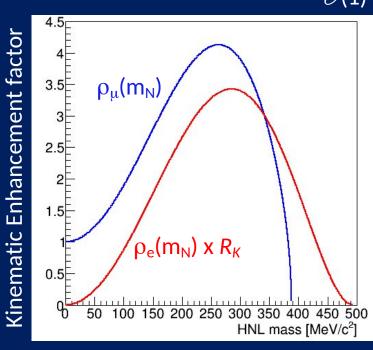
 $|\mathsf{U}_{\ell 4}|^2$

: elements of the extended neutrino mixing matrix

 ρ_{ℓ} (m_N)

: kinematic enhancement factor

HNL production in K⁺ decays


[R. Shrock, PLB96 (1980) 159]

$$\Gamma(K^+ \to \ell^+ N) = \Gamma(K^+ \to \ell^+ \nu) \times \rho_{\ell}(m_N) \times |U_{\ell 4}|^2.$$

$$\mathscr{O}(1)$$

 $|U_{\ell 4}|^2$: elements of the extended neutrino mixing matrix

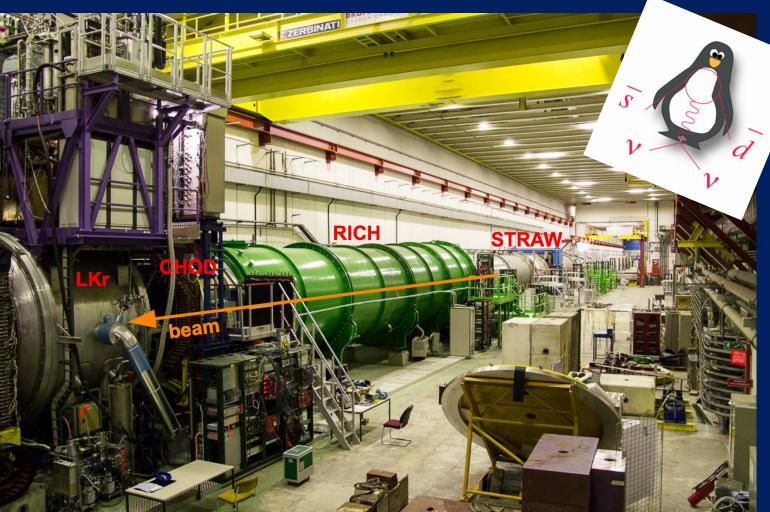
 $\rho_{\ell}(m_N)$: kinematic enhancement factor

$$R_{K} = \frac{\Gamma(K^{+} \to e^{+}v)}{\Gamma(K^{+} \to \mu^{+}v)} \approx 2.5 \cdot 10^{-5}$$

$$\rho_{l}(m_{N}) = \left[(x+y) - (x-y)^{2} \right] / \left[x(1-x)^{2} \right] \times \lambda^{1/2}(1,x,y)$$

$$x = (m_{l}/m_{K})^{2}, y = (m_{N}/m_{K})^{2}$$

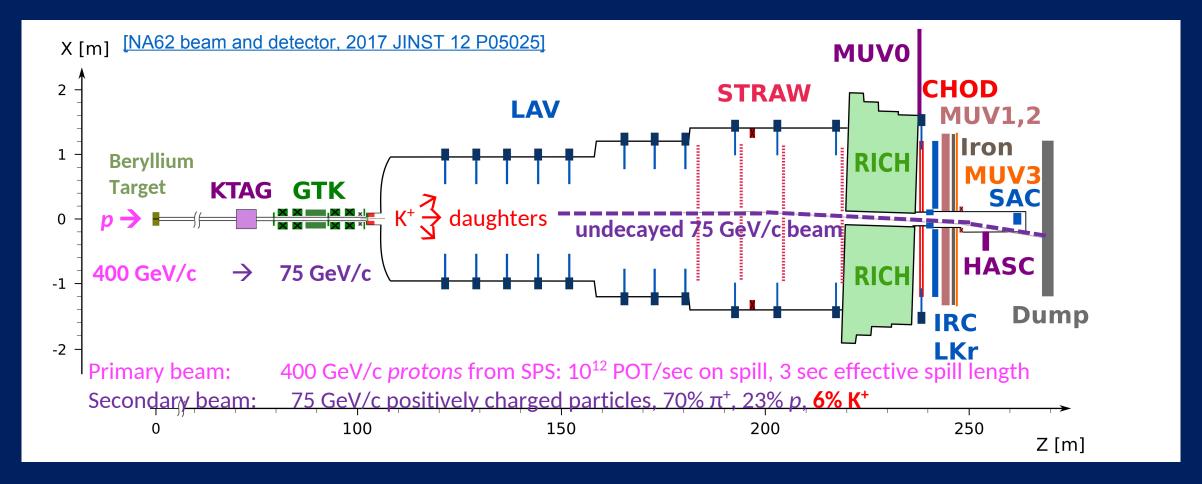
$$\lambda(a,b,c) = a^{2} + b^{2} + c^{2} - 2(ab + bc + ac)$$


- HNL production kinematically enhanced with respect to SM decays, except near kinematic endpoints
- Enhancement ~10⁵ in the $K^+ \rightarrow e^+ N$ case: relaxed helicity suppression

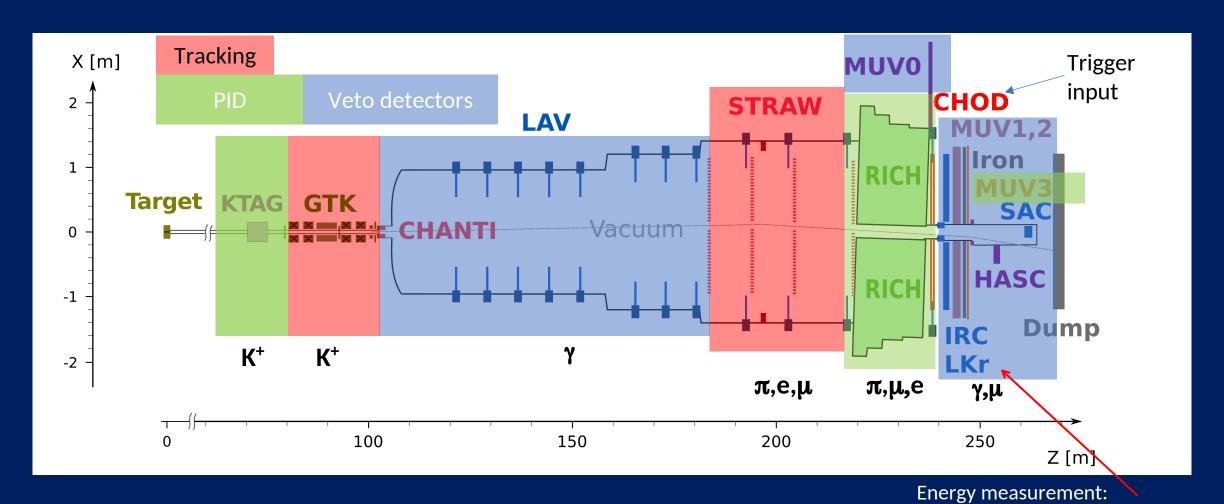
$K^+ \rightarrow \mu^+ \nu X : X \rightarrow \text{invisible or } X \rightarrow \mu \mu / \gamma \gamma$

[PRL 124 (2020) 041802]

- X→ invisible:
 - probe remaining parameter space in which muonic forces reconcile the $(g-2)_{\mu}$ anomaly
 - Dark Matter candidate (thermal DM production)
 - neutrinos: reduce the H₀ (Hubble constant) tension
- $X \rightarrow \mu \mu / \gamma \gamma$:
 - improve coverage for scalar and vector forces, covering (g-2)_μ favoured region
- Background potentially also from $K^+ \rightarrow \mu^+ \nu \nu \bar{\nu}$:
 - ➤ Search for new physics with ultra-rare decay: probe the new chiral perturbation theory form factors related to the neutral weak boson exchange BR: 1.6×10⁻¹⁶ [JHEP 1610 (2016) 039]
- \blacktriangleright Here: X->invisible and $K^+ \rightarrow \mu^+ \nu \nu \overline{\nu}$ as variation of the HNL analysis


The Kaon Factory: NA62 @ CERN SPS 💬

- > Fixed target experiment
- ➤ Kaon decay-in-flight
- Main goal: BR($K^+ \to \pi^+ \nu \nu$)
 measurement with $\mathcal{O}(10\%)$ precision
 - Results: [PLB791 (2019) 156-166,JHEP11 (2020)]



The Kaon Factory: NA62 @ CERN SPS

Nominal beam rate: 750 MHz: K⁺ rate 45 MHz and 3.7 MHz mean K⁺ decay rate in fiducial volume (FV)

The Kaon Factory: NA62

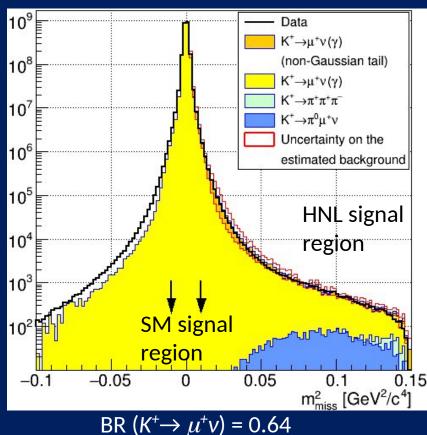
Liquid Krypton calorimeter LKr

Data taking, trigger conditions and selections

- 2.2 x 10^{18} proton-on-target events (POT) in Run1 (2016 2018): 6 x 10^{12} K⁺ decays recorded
- Excellent time resolution: $\mathcal{O}(100 \text{ ps})$ to match beam and daughter particle information
- PID capability (RICH+LKr+HAC+MUV): $\mathcal{O}(10^{-8})$ muon suppression
- High-efficiency photon veto: $\mathcal{O}(10^{-8})$ rejection of $\pi^0 \rightarrow \gamma \gamma$ for $E(\pi^0) > 40$ GeV
- Kinematics: rejection of main K^+ modes down to 10^{-4} via kinematics reconstruction

Specific selections within the considered searches:

- Triggers used: $K^+ \to \pi^+ \nu \nu$ for $K^+ \to e^+ N$; minimum bias (downscaled by 400) for $K^+ \to \mu^+ N$
- Downstream track reconstructed by the STRAW spectrometer in acceptance of LKr and MUV3
- Lepton momentum requirements: $5 < p_e < 30 \text{ GeV/c}$; $5 < p_{\mu} < 70 \text{ GeV/c}$
- Lepton PID: e^+ : 0.92 < E_{LKr}/p_e < 1.08, RICH and MUV3 veto ; μ^+ : E_{LKr}/p_μ < 0.2, RICH and MUV3 information
- Upstream track identified by KTAG and GTK matched with the downstream lepton


HNL search with Run1 data-set


Search for $K^+ \rightarrow \mu^+ N$

Search for $K^+ \rightarrow e^+ N$

[Phys. Lett. B 816 (2021) 136259]

[Phys. Lett. B 807 (2020) 135599]

Number of kaon decays in the fiducial volume (FV):

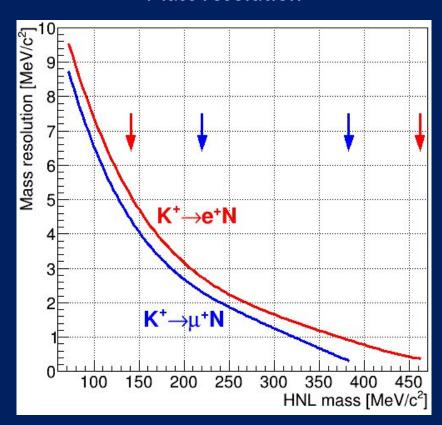
$$(1.14 \pm 0.02) \times 10^{10}$$

 $(3.52 \pm 0.02) \times 10^{12}$

- Peak search in the missing mass distribution
 m²_{miss}= (P_K P_ℓ)² with P_K (P_ℓ): kaon (lepton) four-momentum, using GTK and STRAW information
- $K^+ \rightarrow \mu^+ \nu$ with $\mu^+ \rightarrow e^+ \nu \nu$ suppressed by good vertex resolution
- $\pi^+ \rightarrow e^+ v$ accidental mistagging
- HNL production signal: a spike above continuous missing mass spectrum
- > No HNL production signals are observed.

HNL: Mass scan and resolution

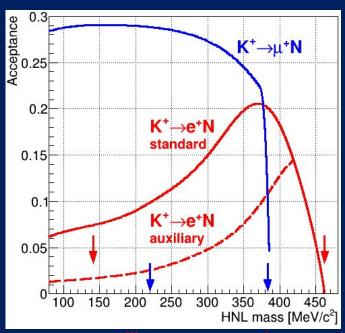
- Signal window: $|m_{miss} m_N| < 1.5 \sigma_m$ (σ_m mass resolution, evaluated with simulation)
 - \triangleright background is proportional to $\sigma_m \rightarrow$ resolution is crucial to resolve possible HNL mass splitting!
- N_{exp}: number of expected background events
 - for each hypothesis: fit of 2nd order polynomial to data in sidebands **1.5** $\sigma_m < |m_{miss} - m_N| < 11.25 \sigma_m$ of the m²_{miss} spectrum
- Considered HNL mass ranges:


$$e^+: m_N = 144 - 462 \text{ MeV/c}^2$$

 $\mu^+: m_N = 188 - 386 \text{ MeV/c}^2$

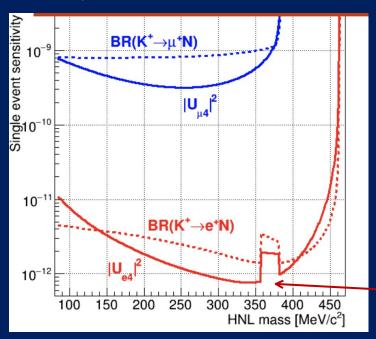
Mass scan steps and number of hypotheses:

$$e^+$$
: 260 with σ_m / 2 for 260


 μ^+ : 269 with 1 MeV/c² (0.5 MeV/c²) for m_N < (>) 300 MeV/c²

Mass resolution

HNL: Acceptance and sensitivity


Signal selection acceptance A_N

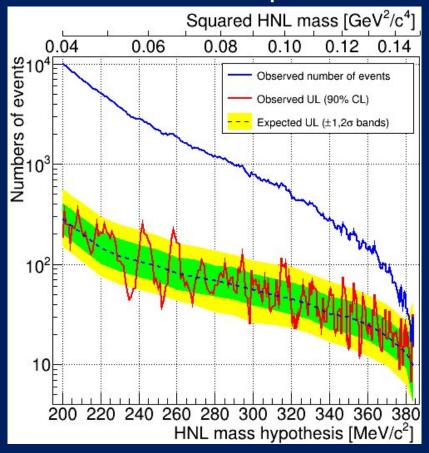
auxiliary: p_e < 20 GeV/c

A_N from simulations assuming infinite HNL lifetime

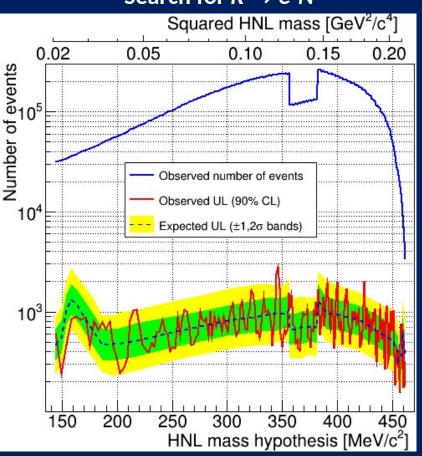
Single event sensitivity (SES)

 N_K : Effective number of Kaon decays in FV

 N_s : Number of expected HNL signal events: $N_s = BR(K^+ \rightarrow \ell^+ \nu) / BR_{SES} = |U_{\ell 4}|^2 / |U_{\ell 4}|^2_{SES}$


→ all ingredients to obtain upper limits @ 90% confidence level (CL)

auxiliaryselection used


$$\begin{aligned} & \textbf{BR}_{\textbf{SES}} = 1/(N_K \times A_N) \\ & | \textbf{U}_{\ell 4} |^2_{\textbf{SES}} = \textbf{BR}_{\textbf{SES}} / \left[\textbf{BR} (K^+ \rightarrow \ell^+ \nu) \rho_{\ell} (m_N) \right] \end{aligned}$$

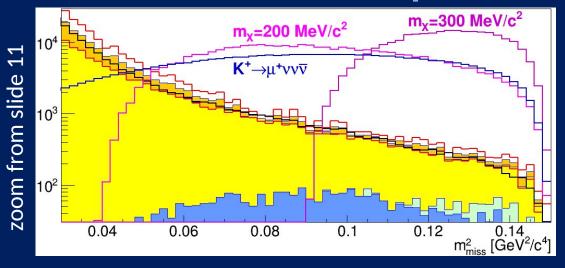
HNL: Upper limits of N_S - Run1 data set

Search for $K^+ \rightarrow \mu^+ N$

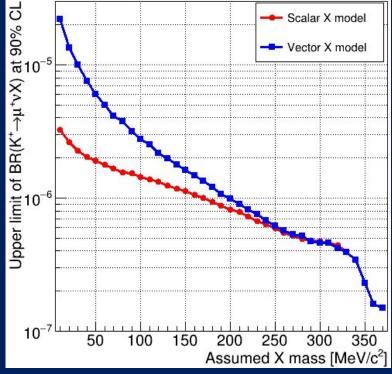
Search for $K^+ \rightarrow e^+ N$

 N_{obs} , and the observed UL of N_s , and the expected $\pm 1\sigma$ and $\pm 2\sigma$ bands of variation of N_s in the null (i.e. background-only) hypothesis.

Upper limit (UL) of the number of signal events N_s at 90% CL using CLs technique:

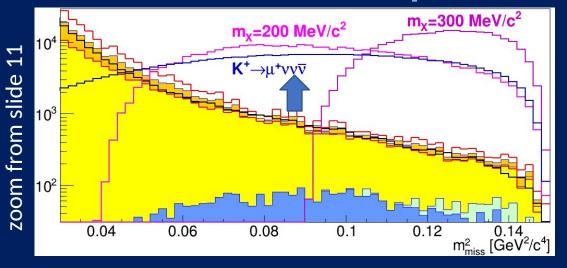

- Use the number of observed events (N_{obs} , δN_{obs}) within the signal window and expected background events (N_{exp} , δN_{exp}) \rightarrow compute the local signal significance for each mass hypothesis and evaluate UL of N_s
- μ⁺: significance never exceeds 3σ
 → no HNL production signals are observed.
- e⁺: maximum local significance of 3.6 for m_N = 346 MeV/c².
 Accounting for look-elsewhere effect: global significance = 2.2

HNL: Upper limits of $|U_{\ell 4}|^2$ - Run1 data set



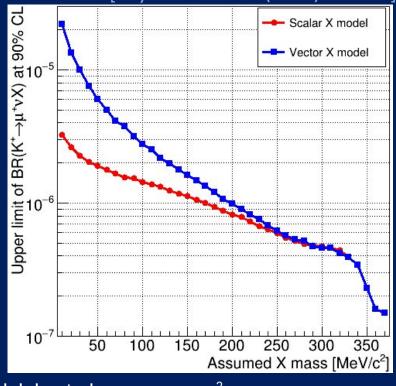
- \triangleright $\mathscr{O}(10^{-9})$ limits on $|U_{e4}|^2$ and $\mathscr{O}(10^{-8})$ limits on $|U_{\mu4}|^2$
- More than 2(1) orders of magnitude improvements from run 1 data for e⁺(μ⁺) with respect to previous results.
- For μ⁺: NA62 consistent with the E949 result and extends UL to higher masses.
- For e*: values favoured by the Big Bang Nucleosynthesis (BBN) constraint (dashed red line) are excluded for HNL masses up to 340 MeV/c²

Search for new particles: $K^+ \rightarrow \mu^+ \nu X$



- Mass range 10—370 MeV/c²
- Compare expected and observed number of events for each mass hypothesis and extract limit: → No signal observed
- The limits obtained in the scalar model are stronger than those in the vector model due to larger mean m^2_{miss} .

Search for new particles: $K^+ \rightarrow \mu^+ \nu X$

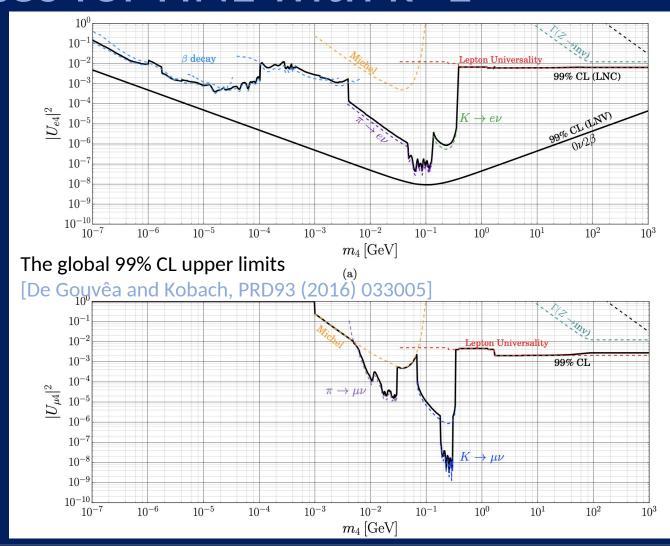


- Compare expected and observed number of events for each mass hypothesis and extract limit: → No signal observed
- The limits obtained in the scalar model are stronger than those in the vector model due to larger mean m^2_{miss} .

Related search: $K^+ \rightarrow \mu^+ v v \overline{v}$, current limit: BR < 2.4×10⁻⁶ (E949, [PRD94 (2016) 032012])

- Search region $m_{miss}^2 > 0.1 \text{ GeV}^2/c^4$ (optimized to extract strongest limit)
- Observed events: 6894; expected from MC: 7549 \pm 928 \rightarrow set new upper limit: BR <1.0×10⁻⁶ at 90% CL in the SM framework

Summary, conclusions and outlook



- World best upper limits on HNL mixing parameters have been set with Run1 data:
 - $\mathcal{O}(10^{-9})$ limits on $|U_{e4}|^2$, full data set [PLB 807 (2020) 135599]
 - $\mathcal{O}(10^{-8})$ limits on $|U_{\mu 4}|^2$, full data set [PLB 816 (2021) 136259]
- First search for $K^+ \to \mu^+ \nu X$ decays has been performed in the mass range 10-370 MeV/c²: upper limits between $\mathcal{O}(10^{-7})$ for high m_X and $\mathcal{O}(10^{-5})$ for low m_X at 90% CL ([PLB 816 (2021) 136259])
- World best upper limit on BR($K^+ \rightarrow \mu^+ \nu \nu \bar{\nu}$) has been set: 1.0×10⁻⁶ at 90% CL ([PLB 816 (2021) 136259])
- With the NA62 experiment at CERN, a considerable spectrum of ongoing and potential measurements to test and challenge the Standard Model is available.
- The high intensity Kaon beam provides the basis for rare decay studies, precision measurements as well as Dark Matter and New Physics searches ...
- ... and with future data recordings in Run2 with higher intensity started in July 2021 for improvements in the sensitivity to $|U_{\ell 4}|^2$

Backup

Global Constraints on a Heavy Neutrino: Upper limits estimates for HNL with k=1

- Assuming HNL decay products are not observable:
- ➤ HNL accessible from decays:
 - beta
 - lepton (μ, τ)
 - meson
 - neutrinoless double β-decay
- > Lepton flavour violating processes
- > Lepton universality tests
- Mass range for Kaon decays:50 MeV < m₄ < 500 MeV

HNL: Systematic uncertainties

Systematic uncertainty estimation:

- Possible HNL signals in side-bands: inject artificial HNL signals corresponding to the Single Event Sensitivity (SES) into side-bands
 - > negligible
- Background shape: compare 2nd and 3rd order polynomials
 - \triangleright dominant contribution to δN_{exp} is statistical, systematic uncertainties become comparable as m_N approaches the boundaries of the HNL search region.
- Total uncertainty of background estimates, $\delta N_{exp}/N_{exp}$:
 - \triangleright e⁺: 0.2% few %; μ +: 1-2% for m_N < 300 MeV, increases up to 10% in HNL search region