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➤ QCD is a fundamental field theory that encodes nucleon structure 
and dynamics 

➤ Interactions arise from fundamental symmetries, properties such 
as mass and the spin are emergent through complex structure of 
QCD


➤ Major goal is to understand the dynamical properties of QCD by 
exploring structure and tomography of nucleons and nuclear 
matter


•

THEORETICAL FOUNDATIONS OF QCD
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EIC - A QCD lab to explore the structure and dynamics of the visible world 

Theoretical foundation
3
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Interactions arise from fundamental symmetry principles: SU(3)c 

Properties of visible universe such as mass and spin (e.g. proton): Emergent through complex structure of the 

QCD vacuum

Major goal:  

Understanding QCD interactions 

and emergence of hadronic and 

nuclear matter in terms of quarks 

and gluons

Essential elements looking 

forward:  

1) Tomography of hadrons and 

nuclear matter in terms of 

quarks and gluons 

2) Synergy of experimental 

progress and theory D. Leinweber: Quantum fluctuations in gluon fields 
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"Visualizations of the QCD Vacuum.” lattice QCD calculation by by Derek Leinweber 



HOW TO QUANTIFY THE STRUCTURE?
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Solid state physics: relatively simple Lagrangian - complex structures.

If motion of nuclei is much slower than the speed of light: 

structure = “still picture”.  Allows one to create new materials

No still picture for the proton’s structure: Quarks and gluons are 
moving relativistically, their number changes. The language of 
partonic structure is the language of quantum probabilities

hP, S|O( ̄, , Aµ)|P, Si
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WHY SPIN?
Spin plays a critical role in 

determining the basic 
structure of fundamental 

interactions 

Spin is a fundamental 
degree of freedom 
originated from the 

space-time symmetry 

Spin provides a unique opportunity 
to probe the inner structure of a 
composite system (such as the 

proton) and hence to test our ability 
to understand the working of non-

perturbative QCD 

Test of a theory is not 
complete without a full 

exploration of spin-dependent 
decays and scatterings

4Xiangdong Ji, DIS08



EVOLUTION OF OUR UNDERSTANDING OF THE SPIN STRUCTURE
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Chapter 1

Overview: Science, Machine and
Deliverables of the EIC

1.1 Scientific Highlights

1.1.1 Nucleon Spin and its 3D Structure and Tomography

Several decades of experiments on deep inelastic scattering (DIS) of electron or muon beams
o↵ nucleons have taught us about how quarks and gluons (collectively called partons) share
the momentum of a fast-moving nucleon. They have not, however, resolved the question of
how partons share the nucleon’s spin and build up other nucleon intrinsic properties, such
as its mass and magnetic moment. The earlier studies were limited to providing the lon-
gitudinal momentum distribution of quarks and gluons, a one-dimensional view of nucleon
structure. The EIC is designed to yield much greater insight into the nucleon structure
(Fig. 1.1, from left to right), by facilitating multi-dimensional maps of the distributions of
partons in space, momentum (including momentum components transverse to the nucleon
momentum), spin, and flavor.

Figure 1.1: Evolution of our understanding of nucleon spin structure. Left: In the 1980s,
a nucleon’s spin was naively explained by the alignment of the spins of its constituent quarks.
Right: In the current picture, valence quarks, sea quarks and gluons, and their possible orbital
motion are expected to contribute to overall nucleon spin.

1

1980’ - the spin of the nucleon

 is due to the valence quarks

Modern concept: valence quarks, sea quarks, 

and gluons together with orbital angular 

momentum are contributing



QCD FACTORIZATION IS THE KEY!
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We need a probe to “see” quarks and gluons
electron 
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QCD FACTORIZATION IS THE KEY!
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HADRON’S PARTONIC STRUCTURE
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Collinear Parton Distribution Functions

P
k

fq/P (x)
longitudinal

Probability density to find a quark with a momentum fraction x


Hard probe resolves the particle nature of partons, but is not 
sensitive to hadron’s structure at ~fm distances.

xP



HADRON’S PARTONIC STRUCTURE
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P
k

One large scale (Q) sensitive to particle nature of quark and 
gluons

One small scale (kT) sensitive to how QCD bounds partons and to 
the detailed structure at ~fm distances.


Transverse Momentum Dependent functions

fq/P (x, kT )

longitudinal & transverse

To study the physics of confined motion of quarks and gluons inside 

of the proton one needs a new type “hard probe” with two scales.

kT

xP



10

COLLINEAR SPIN STRUCTURE



COLLINEAR SPIN STRUCTURE
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Spin-1/2 nucleon can be described by three collinear parton 
distribution functions (pdf)

q

N U L T

U

L

T

f1

g1

h1  

unpolarized pdf

helicity pdf

transversity pdf



SPIN DECOMPOSITION
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R. L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990)

The nucleon is a composite system. The spin is carried by its constituents: quarks, anti-
quarks and gluons and the angular momentum generated by their motion.

The nucleon at rest has spin 1/2, however its decomposition in terms of spin and orbital 
contributions associated with quarks and gluons is not unique.

There are two types of decompositions of the proton spin operator: kinetic (also known 
as mechanical) and canonical. These two types differ by how the OAM operator is split 
into the quark and gluon contributions. They share the same quark spin operator.


Kinetic family is related to Generalized Parton Distributions, while canonical in light 
cone gauge is related to collinear helicity distribution functions

C. Lorcé, B. Pasquini, X. Xiong and F. Yuan, Phys. Rev. D 85, (2012)

E. Leader and C. Lorce, Phys.Rept. 541, 163 (2014)

27

Kinetic family

Ji

Wakamatsu

Canonical family

Jaffe-Manohar

Chen et al.

...

...

Belinfante

FIG. 2. The Wakamatsu classification of proton spin decompositions into two families. See text for more details.

Disadvantages

• Although gauge-invariant, the Wakamatsu decomposition (just like the Chen et al. decomposition) makes the
Coulomb gauge special, which seems to contradict the spirit of gauge invariance;

• The individual contributions Le
Wak and LγWak, seen as operators, do not satisfy the generic equal-time commu-

tation relations [J i, Jj ] = iεijkJk defining angular momentum operators in a quantum theory. Only the spin
operators Se

Wak and SγWak, and the total OAM operator Le
Wak + LγWak can be considered as quantum angular

momentum operators;

• Contrary to the spin operators Se
Wak and SγWak, the OAM operators Le

Wak and LγWak are not generators of
rotations;

• As in the Chen et al. decomposition, the “physical” photon field is a non-local expression in terms of A.

6. A classification of the different decompositions

Apart from the Belinfante decompostion, all the other decompositions presented above share a common piece,
namely the electron spin contribution Se

JM = Se
Ji = Se

Chen = Se
Wak. They then just differ in the way the rest of the

total angular momentum is shared between the electron OAM and the photon angular momentum.
As summarized by Wakamatsu [39], all these decompositions can be sorted into two families14, see Fig. 2:

• The kinetic family (Wakamatsu’s family I), where the potential angular momentum is attributed to the photon.
The Belinfante, Ji and Wakamatsu decompositions are members of the kinetic family.

• The canonical family (Wakamatsu’s family II), where the potential angular momentum is attributed to the
electron. The Jaffe-Manohar and Chen et al. decompositions are members of the canonical family.

Since the potential angular momentum contribution is likely non-vanishing, decompositions belonging to different
families are expected to be physically inequivalent. While the difference is small in non-relativistic systems like the
atom [27, 41, 80], it becomes significant for relativistic systems like the proton [44, 78].
The potential angular momentum is itself a gauge-invariant quantity. Therefore, the splitting of the gauge potential

into pure-gauge and physical terms allows one to decompose the proton spin into five gauge-invariant contributions,
instead of the expected four. Based on this observation, Leader [50] criticized Wakamatsu’s classification arguing
that one could in fact consider an infinite number of families by attributing a fraction α of the potential term to the
electrons and the remaining fraction (1−α) to the photons. Note however that only the values α = 0, 1 are natural as
they simply correspond to the kinetic and canonical OAM, respectively. Leader favors the canonical version because
the operators, at least at equal time, generate the expected rotations of the relevant fields, and this seems a reasonable
property to demand for an angular momentum operator.

14 Wakamatsu did not consider the Belinfante decomposition in his classification. We have added it for completeness.

S. Bashinsky and R. L. Jaffe, Nucl. Phys. B 536 (1998)
X. Ji, Phys. Rev. Lett. 78 (1997)
X. -S. Chen, X. -F. Lu, W. -M. Sun, F. Wang and T. Goldman,

Phys. Rev. Lett. 100 (2008)
M. Wakamatsu, Phys. Rev. D 83 (2011)
Y. Hatta, Phys. Rev. D 84 (2011)

L. Adhikari and M. Burkard, Phys.Rev.D 94 (2016)

C. Lorcé and B. Pasquini, JHEP 09 (2013)    
C. Lorcé and B. Pasquini, Phys. Rev. D 84, (2011)   



LONGITUDINAL SPIN
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When the proton or the neutron are polarized, quarks and gluons are polarized as well. 
Helicity distribution functions: number of quarks/gluons with spin parallel to the nucleon 
momentum minus the number of quarks/gluons with the spin opposite to the nucleon 
momentum

The relevant spin decomposition is by Jaffe and Manohar
R. L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990)
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�f(x,Q2) = g1(x,Q
2) ⌘ f+(x,Q2)� f�(x,Q2)

Quark spin contribution

Gluon spin contribution

quark and gluon orbital angular momenta (OAM) 
via twist-3 GPDs, Wigner functions

Difficult to measure in experiment:

Related to measured observables:

D.V. Kiptily, M.V. Polyakov, Eur. Phys. J. C 37 (2004

A. Courtoy, G. R. Goldstein, J. O. Gonzalez Hernandez, S. Liuti, A. Rajan, PLB 731 (2014) 
Y. Hatta, Phys. Lett. B 708 (2012);

Y. Hatta, S. Yoshida, J. High Energy Phys. 1210 (2012
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LONGITUDINAL SPIN
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64 7.1. GLOBAL PROPERTIES AND PARTON STRUCTURE OF HADRONS

Figure 7.11: Correlation (upper panel) and sensitivity (lower panel) coefficients between the
gluon helicity distribution Dg(x, Q2) and the (photon-nucleon) double-spin asymmetry A1,
as well as between the quark-singlet distribution DS(x, Q2) and A1, as a function of {x, Q2}.
The lighter blue and darker blue circles represent the values of the correlation (sensitivity)
coefficient for

p
s = 45 GeV and 140 GeV, respectively. In all the cases the size of the circles

is proportional to the value of the correlation (sensitivity) coefficient.
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Figure 7.12: Impact of the projected EIC ALL pseudoda on the gluon helicity (left panel)
and quark singlet helicity (right panel) distributions as a function of x for Q2 = 10 GeV2.
In addition to the DSSV14 estimate (light-blue), the uncertainty bands resulting from the fit
including the

p
s = 45 GeV DIS pseudodata (blue) and, subsequently, the reweighting withp

s = 140 GeV pseudodata (dark blue), are also shown.

the impact of the extrapolation region, three sets of pseudodata were generated by
shifting the unmeasured region at low x with ±1s confidence level, using existing
helicity PDF uncertainties as well as the central predictions.

In Fig. 7.13 the uncertainty bands for gp
1 before and after the three scenarios (±1s

confidence level and central) at the EIC are shown, along with the ratios dEIC/d

Yellow Report (2021) arXiv:2103.05419

Global QCD analyses are performed to extract helicity pdfs:


At present around of the spin is attributed to quarks and anti-quarks. 

The evidence for non-zero gluon contribution, around , is mainly due to RHIC 
spin program

25 %
30 %

DSSV: D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Phys. Rev. Lett. 113 (2014)
NNPDFpol: E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, J. Rojo, Nucl. Phys. B 887 (2014)
JAM: J. J. Ethier, N. Sato, W. Melnitchouk, Phys. Rev. Lett. 119 (13) (2017)
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√s = 141.4 GeV

FIG. 2: [color online] Projected EIC data for the structure
function g1(x,Q

2) for the different combinations of electron
and proton energies in Tab. I. Constants are added to g1 to
separate the different x bins and multiple data points in the
same (x,Q2) bin are slightly displaced horizontally. The solid
lines are obtained for the optimum DSSV fit of 2014 [17] and
the shaded bands illustrate the 90% C.L. uncertainties due to
variations in the gluon helicity density. The shaded region in
the lower left corner illustrates the (x,Q2) region covered by
present fixed target data.

to cover significantly lower values of x from the very be-
ginning of operations.

Figure 2 illustrates our updated simulated data sets
for inclusive polarized DIS at an EIC for the three differ-
ent choices of c.m.s. energies listed in Tab. I. The solid
lines reflect the expectations from the best fit of DSSV
2014 [17] by extrapolating their results outside the exper-
imentally constrained x and Q2 range. The shaded bands
illustrate the uncertainty estimates corresponding to the
90% C.L. variations of∆g(x,Q2) given in Ref. [17], which
cover a very significant spread below about x ! 0.01;
see also Fig. 1 in Ref. [17]. The error bars for the EIC
pseudo-data were determined as described above and in
Ref. [8] and reflect the expected statistical accuracy for a
modest integrated luminosity of 10 fb−1, 70% beam po-
larization, and 50% efficiency in the data taking. We re-
call that all currently available polarized DIS data cover
only the lower left corner in Fig. 2 with the smallest x,

g 1(
x,

Q
2 )

x

DSSV 2014
Q2=10 GeV2

incl. 90% C.L. g1 variations

Q2=1 GeV2

Q2=100 GeV2

selected EIC projections:
        √s [GeV]          〈Q2〉
                               [GeV2]141.4  122.7  77.5
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FIG. 3: [color online] The polarized DIS structure function
g1(x,Q

2) at Q2 = 10GeV2 as a function of x computed with
the optimum DSSV 2014 helicity PDFs [17] (solid line). The
dotted curves represent alternative fits within 90% C.L. un-
certainties. The dashed and dot-dashed lines show the effects
of the scale evolution from Q2 = 1GeV2 to 100GeV2. The
points illustrate typical uncertainties and the kinematic reach
of projected EIC data for the three different c.m.s. energies
listed in Tab. I.

x ! 3.6 × 10−3, being reached by the recent COMPASS
data [30] for Q2 ! 1GeV2. As can be seen, in the kine-
matic region already covered well by present fixed target
data, x ! 0.01, the remaining uncertainties in g1(x,Q2)
are very small. For smaller x, the precision of the pro-
jected EIC data is significantly better than current un-
certainties and these measurements will be the decisive
factor in future global fits as we shall illustrate in the
next Section.
One notices the rather modest scaling violations

dg1(x,Q2)/d lnQ2 for the optimum DSSV 2014 fit
throughout the entire x and Q2 range shown in Fig. 2,
in particular, if compared to similar plots for the unpo-
larized DIS structure functions [29]. On the one hand,
this is due to the less singular scale evolution for helicity
PDFs at small x, and, on the other hand, there is also
a potential delicate cancellation with the quark helicity
PDFs, which, as ∆g itself, are not bound to be positive
definite and, in addition, can have different signs for dif-
ferent flavors. Therefore, alternative fits, like those for
∆g shown in Fig. 1, will all exhibit somewhat different
patterns of scaling violations than the optimum DSSV
2014 fit.
As we shall see next, our current ignorance of the small

x behavior of helicity quark densities also imposes a sig-
nificant uncertainty on expectations for g1(x,Q2) in the
EIC regime. In Fig. 3 we present the DIS structure func-

The impact of the EIC on determination of the quark and gluon contributions

Aschenauer , Sassot, Stratmann, Phys.Rev.D 92 (2015) 

E. R. Nocera, Impact of Recent RHIC Data on Helicity-Dependent Parton Distribution Functions (2017). arXiv:1702.05077.
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Can we constrain theoretically the amount of proton spin and OAM coming from small x?

Existing and future experiments probe the helicity distributions and OAM down to some min x 


If we want to predict helicity PDFs at small x, we need a different evolution equation similar to 
BK/JIMWLK evolving in x starting from some value of .

Potentially negative 10-20% of the proton spin may be carried by small-x quarks helicity 
(JAMsmallx, preliminary) 

x ≈ 10−3
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JAMsmallx: Adamiak, Melnitchouk, Pitonyak, Sato, Sievert, Kovchegov (2102.06159)

Pitonyak, Sievert, Kovchegov (15), (18)
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⇤Better constraint at small-x achieved  
compared to the traditional approaches
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BEYOND THE COLLINEAR PICTURE



17see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

Wigner distributions  
(Fourier transform of GTMDs = 
Generalized Transverse 
Momentum Distributions)

Transverse Momentum Dependent

Distributions TMDs  

Fourier transform  
of Generalized Parton Distributions

                          (GPDs)

PDFs Fourier transform  
of Form Factors
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xP xP
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DVCS SIDIS

ensures hard scale, pointlike interaction

momentum transfer can be varied 

independently 

Connection to 3D structure 

Drell-Yan frame

ensures hard scale, pointlike interaction

final hadron transverse momentum

can be varied independently 

Connection to 3D structure


     is the transverse separation of parton fields

 in configuration space 

P P 0

Q2

�

Q2
PhT

k?
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⇢(x,~b?) =

Z
d
2~�?
(2⇡)2

e
�i~�?·~b?Hq(x, ⇠ = 0, t = �~�2

?)

Ji (1997)

Radyushkin (1997)

Kotzinian (1995) 

 
 
Mulders, Tangerman (1995), 

Boer, Mulders (1998)

Burkardt (2000)

Burkardt (2003)

Ji, Ma, Yuan (2004)

Collins (2011)

Dupré, Guidal, Niccolai,  
Vanderhaeghen,  
arXiv:1704.07330

White Paper (2012) Accardi et al, arXiv:1212:1701

(a) (b)

(c) (d)

Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function

⇢1;q h"(x,kT ,ST , µ) = f1;q h(x, kT ; µ, µ
2) �

kTx

M
f
?
1T ;q h(x, kT ; µ, µ

2), (4.7)

where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can

– 27 –
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Fig. 24. x-dependence of 〈b2⊥〉 for quarks in the proton. The
data points correspond to the results obtained in this work
for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0
−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0
dxH+(x, x, t)C

+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which

<latexit sha1_base64="0rAq2sFd/Mwe/ZgSHoWQyVwSqF4=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48R8oJkCbOT3mTI7Ow6MxsIIT/hxYMiXv0db/6Nk2QPmljQUFR1090VJIJr47rfTm5tfWNzK79d2Nnd2z8oHh41dJwqhnUWi1i1AqpRcIl1w43AVqKQRoHAZjC8n/nNESrNY1kz4wT9iPYlDzmjxkqtzggZCbq1brHklt05yCrxMlKCDNVu8avTi1kaoTRMUK3bnpsYf0KV4UzgtNBJNSaUDWkf25ZKGqH2J/N7p+TMKj0SxsqWNGSu/p6Y0EjrcRTYzoiagV72ZuJ/Xjs14a0/4TJJDUq2WBSmgpiYzJ4nPa6QGTG2hDLF7a2EDaiizNiICjYEb/nlVdK4KHvX5cvHq1LlLosjDydwCufgwQ1U4AGqUAcGAp7hFd6cJ+fFeXc+Fq05J5s5hj9wPn8AgbKPoQ==</latexit>

~bT

Generalized Parton Distributions             Transverse Momentum Dependent distributions



SPIN

Many TMDs and GPDs cannot exist without OAM.
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Our understanding of the hadron evolves:

Nucleon emerges as a strongly interacting, 

relativistic bound state of quarks and gluons

Nucleon 

Polarization

Quark 

Polarization

kT

xP
bTQuark TMDs

�[�+]
q h(x, b) = f1(x, b) + i✏µ⌫T bµs⌫Mf?1 (x, b)
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum
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Studies of DVCS process were highly motivated by Ji decomposition

Related to twist-2 GPDs:

X. Ji, Phys. Rev. Lett. 78 (1997) 610
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These quantities can be computed also in lattice simulationsCHAPTER 7. EIC MEASUREMENTS AND STUDIES 115
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Figure 7.44: Extraction of the GPD H for sea quarks (left) and gluons (center), and the GPD
E for sea quarks (right), at a particular x and Q2. The violet band is the uncertainty obtained
excluding the EIC pseudodata from the global fit procedure [23].

Hard exclusive production of p0 mesons has a final state similar to that of DVCS.
It consists of one scattered lepton in the DIS regime (Q2 > 1 GeV2), one scattered
nucleon in a coherent state (i.e., no break-up of target particle in the interaction),
and either one or two photons for DVCS and p0 production, respectively. This
similarity suggests that a common analysis of the detector requirements for both
processes can be performed, as discussed in Sec. 8.4.1.

The information that can be extracted from a handful of DVCS measurements at
low xB from HERA collider experiments, almost entirely consisting of cross sec-
tions in loose Q2 � t bins, is very limited. GPD-based experiments at larger xB
have been carried out at HERMES and COMPASS. Dedicated fixed-target experi-
ments at JLab-12 will be addressing GPDs in the kinematic region dominated by
valence quarks. More precise data mapping, with high granularity and a wider
phase space, is required to fully constrain the entire set of GPDs for gluons and sea
quarks. This will be provided by the EIC, which connects the domain typical of
fixed-target experiments with that of collider measurements. With its wide range
in energy and high luminosity, the EIC will thus offer an unprecedented opportu-
nity for a precise determination of GPDs.

Simulation studies proved that the EIC can perform accurate measurements of
DVCS cross sections and asymmetries in a very fine binning and with a very low
statistical uncertainty [23]. This pioneering assessment of the EIC capability to
constrain GPDs solely relies on global fits of DVCS measurements. Figure 7.44
shows the uncertainties of GPDs extracted from current data (violet bands) and
how they are constrained after including the EIC pseudodata into the fits (orange
bands). This study demonstrated that the EIC can significantly improve our cur-
rent knowledge of the GPD H for gluons. Moreover, a precise measurement of the
transverse target-spin asymmetry AUT leads to an accurate extraction of the GPD
E for sea quarks, which currently remains almost unconstrained [23].

Diffractive events are known to constitute a large part of the cross section in high-
energy scattering. In Refs. [403–405], access to GPDs is suggested in a diffractive
process where a GPD-driven subprocess (PN ! g⇤(Q02)N0 or PN ! MN0, with
P a hard Pomeron and M a meson) is triggered by a diffractive g⇤(Q2) ! rP pro-

E. Aschenauer, S. Fazio, K. Kumericki, D. Mueller,  JHEP 09 (2013) 093

The impact of the EIC on determination of the sea-quark and gluon contributions
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Many methods are explored by lattice QCD to calculate the spin and OAM, subtraction, direct 
computations

Spin contributions can be computed at physical pion mass. An example from  
ETMC Collaboration

See e.g. review of Keh-Fei Liu and Cédric Lorcé, Eur.Phys.J.A 52 (2016)

Lattice QCD computes  
also the shape of pdfs, GPDs, TMDs 
using various approaches. An example from  
LP3 Collaboration
H. -W. Lin et al Phys.Rev.Lett. 121 (2018)

C. Alexandrou et al, Phys.Rev.D 101 (2020)

Since the quark contribution to the proton spin is
computed, it is interesting to see how much comes from
the intrinsic quark spin. In Fig. 25 we show our results for
1
2ΔΣ

qþ ¼ 1
2 g

qþ
A . These are taken from Ref. [25] and

included in Table V for easy reference. The up quark
has a large contribution, up to about 85% of the proton
intrinsic spin. The down quark contributes about half
compared to the up and with opposite sign. The strange
and charm quarks also contribute negatively with the latter

being about five times smaller than the former giving a 1%
contribution. The total 1

2ΔΣ
qþ is in agreement with the

upper bound from COMPASS [89].
Having both the quark angular momentum and the quark

intrinsic spin allows us to extract the orbital angular momen-
tum using Eq. (12). For a direct calculation using transverse
momentum distributions (TMDs) see Ref. [90]. Our results
are shown in Fig. 26. The orbital angular momentum of the
up quark is negative, reducing the total angular momentum
contribution of the up quark to the proton spin. The con-
tributionof the downquark to the orbital angularmomentum is
positive, almost canceling the negative intrinsic spin contri-
bution resulting in a relatively small positive contribution to
the spin of the proton.
Our final values for each quark flavor and gluon con-

tribution to the intrinsic spin, angular momentum, orbital
angular momentum, and momentum fraction of the proton
are summarized in Table V.

FIG. 24. The decomposition of the proton spin J. The color
notation of the bars is as in Fig. 23. The second error quoted on
the percentages is the systematic error from the Q2 extrapolation
needed in the determination of B20ð0Þ. The dashed horizontal line
indicates the observed proton spin value, and the percentage is
given relative to the total proton spin. Results are given in the MS
scheme at 2 GeV.

FIG. 25. Results for the intrinsic quark spin 1
2ΔΣ contributions

to the proton spin decomposed into up (red bar), down (green
bar), strange (blue bar), and charm (orange bar). The total
contribution of the four flavor is also shown (grey bar) [25].
The dashed horizontal line is the observed proton spin, and the
percent numbers are given relative to it. Results in the MS scheme
are at 2 GeV.

TABLE V. Results for the proton for the average momentum
fraction hxi, the intrinsic quark spin 1

2ΔΣ [25], the total angular
momentum J, and the orbital angular momentum L in the MS
scheme at 2 GeV. Results are given separately for the up (uþ),
down (dþ), strange (sþ), charm (cþ), and gluons (g) where for the
quarks results include the antiquarks’ contribution. The sum over
quarks and gluons is also given as Tot.

hxi J 1
2ΔΣ L

uþ 0.359(30) 0.211(22)(5) 0.432(8) −0.221ð26Þð5Þ
dþ 0.188(19) 0.050(18)(5) −0.213ð8Þ 0.262(20)(5)
sþ 0.052(12) 0.016(12)(5) −0.023ð4Þ 0.039(13)(5)
cþ 0.019(9) 0.009(5)(0) −0.005ð2Þ 0.014(10)(0)
g 0.427(92) 0.187(46)(10)

Tot. 1.045(118) 0.473(71)(14) 0.191(15) 0.094(51)(9)

FIG. 26. Orbital angular momentum L contributions to the
proton spin. The color notation is as in Fig. 25. The second error
quoted on the percentages is the systematic error from the Q2

extrapolation needed in the determination of B20ð0Þ. The dashed
horizontal line denotes the observed proton spin and the per-
centage is given relative to it. Results are given in MS at 2 GeV.
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angular momentum, and momentum fraction of the proton
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the percentages is the systematic error from the Q2 extrapolation
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indicates the observed proton spin value, and the percentage is
given relative to the total proton spin. Results are given in the MS
scheme at 2 GeV.

FIG. 25. Results for the intrinsic quark spin 1
2ΔΣ contributions

to the proton spin decomposed into up (red bar), down (green
bar), strange (blue bar), and charm (orange bar). The total
contribution of the four flavor is also shown (grey bar) [25].
The dashed horizontal line is the observed proton spin, and the
percent numbers are given relative to it. Results in the MS scheme
are at 2 GeV.

TABLE V. Results for the proton for the average momentum
fraction hxi, the intrinsic quark spin 1

2ΔΣ [25], the total angular
momentum J, and the orbital angular momentum L in the MS
scheme at 2 GeV. Results are given separately for the up (uþ),
down (dþ), strange (sþ), charm (cþ), and gluons (g) where for the
quarks results include the antiquarks’ contribution. The sum over
quarks and gluons is also given as Tot.

hxi J 1
2ΔΣ L

uþ 0.359(30) 0.211(22)(5) 0.432(8) −0.221ð26Þð5Þ
dþ 0.188(19) 0.050(18)(5) −0.213ð8Þ 0.262(20)(5)
sþ 0.052(12) 0.016(12)(5) −0.023ð4Þ 0.039(13)(5)
cþ 0.019(9) 0.009(5)(0) −0.005ð2Þ 0.014(10)(0)
g 0.427(92) 0.187(46)(10)

Tot. 1.045(118) 0.473(71)(14) 0.191(15) 0.094(51)(9)

FIG. 26. Orbital angular momentum L contributions to the
proton spin. The color notation is as in Fig. 25. The second error
quoted on the percentages is the systematic error from the Q2

extrapolation needed in the determination of B20ð0Þ. The dashed
horizontal line denotes the observed proton spin and the per-
centage is given relative to it. Results are given in MS at 2 GeV.
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u and d quarks  
spin in opposite  
directions. 

Their OAMs are  
approximately equal  
in magnitude

The results given in Tables V and VI are obtained using
one ensemble of twisted mass fermions. Therefore, it is not
possible to quantitatively determine finite lattice spacing
and volume systematics. However, in Ref. [91] several
Nf ¼ 2 twisted mass fermion ensembles were analyzed
with pion masses in the range of 260 MeV to 470 MeV
and lattice spacings a ¼ 0.089, 0.070, and 0.056 fm as well
as for two different volumes. A continuum extrapolation at
a given value of the pion mass was performed. We found
negligible Oða2Þ terms yielding a flat continuum extrapo-
lation. Therefore, we expect that cutoff effects will be small
also for our current ensemble.

VII. COMPARISON WITH OTHER STUDIES

In order to evaluate the contribution of each quark flavor
to the proton spin and momentum one needs to compute the
quark-disconnected diagrams as done here. The evaluation
of these contributions is much more challenging as com-
pared to the connected ones, in particular at the physical
point. This is the main reason that most lattice QCD studies
to date have mostly computed isovector quantities for
which the aforementioned diagrams cancel. For instance,
in the case of the axial charge, which is an isovector
quantity, there are numerous studies [92], whereas for the
individual quark flavor axial charges gq

þ

A ≡ ΔΣqþ results
computed directly at the physical point are still scarce. In
order to make a comparison with other lattice QCD studies,

we include results obtained using a chiral extrapolation. We
limit ourselves to comparing results that were obtained
having at least one ensemble with close to physical pion
mass, meaning below 180 MeV. Although such a chiral
extrapolation may introduce uncontrolled systematics that
are absent from the results reported here, it allows for a
comparison with published lattice QCD results on these
quantities.
We begin with 1

2ΔΣ
qþ and consider the following lattice

QCD studies:
(i) The χQCD Collaboration analyzed three Nf ¼

2þ 1 gauge ensembles of domain-wall fermion
(DWF) generated by the RBC/UKQCD Collabora-
tion with pion masses 171,302, and 337 MeV and
lattice spacings of 0.143,0.111, and 0.083 fm. They
used overlap fermions in the valence sector. They
performed a combined fit in order to extrapolate to
the physical pion mass, the continuum, and infinite
volume limits [29].

(ii) The PNDME Collaboration analyzed several Nf ¼
2þ 1þ 1 gauge ensembles of highly improved
staggered quarks (HISQ) generated by the MILC
Collaboration. They used Wilson clover fermions in
the valence sector. For the connected contributions
they analyzed 11 ensembles with mπ ≃ 315, 220,
135 MeV and lattice spacings a ≃ 0.15, 0.12, 0.09,
0.06 fm. The disconnected contributions were com-
puted on a subset of these ensembles. The strange
quark contributions were computed on seven en-
sembles using all lattice spacings but only one
physical point ensemble was analyzed; the lights
disconnected were computed on six ensembles for
two values of mπ ¼ ð315; 220Þ MeV, which are not
close to the physical pion mass and thus excluded
from the comparison. They performed a combined

TABLE VI. Renormalized results of the nucleon in the MS
scheme at 2 GeV for the isovector hxi, J, and 1

2ΔΣ.

hxi J 1
2ΔΣ

uþ − dþ 0.171(18) 0.161(24)(7) 0.644(12)

FIG. 27. Results for 12ΔΣ
qþ. From left to right: for uþ, dþ, sþ, and cþ quarks. Red, green, blue, and orange denote lattice QCD results,

with filled symbols being results that are computed directly at the physical point and open symbols results that were obtained after a
chiral extrapolation. The inner error bar is the statistical error and the outer one the total that includes systematic errors. In particular, red
circles show the results using the cB211.072.64 ensemble of this work and reported in Ref. [25] with the associated error band. Green
squares show ETM Collaboration results from Ref. [27]; blue upwards pointing triangles show results from χQCD [29]; and orange left
pointing triangles show results from PNDME [28]. Results from global fits of polarized PDFs are shown with black symbols and right
triangles, pentagons, diamonds, and rhombus being from NNPDFpol.1 [17], DSSV08 [11], JAM15 [93], and JAM17 [94], respectively.
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FIG. 3. The top panel is a quark helicity quasi-PDF in
RI/MOM scheme at proton momentum 3.0 GeV and resulting
physical PDF in MS at µ = 3 GeV. The error bands are sta-
tistical. The bottom panel shows the matched physical PDFs
from various proton momenta.

ing is in some sense boosting the finite-momentum quasi-
PDF to an infinite-momentum one with proper renormal-
ization, and boosting will in general move large-x partons
to smaller x. In the bottom panel, we show a compari-
son between the helicity distributions extracted from dif-
ferent proton momenta. In the large-x region, the dif-
ferences are small, indicating small higher-twist e↵ects.
However, the central values at small and negative x shift
noticeably from 2.2 to 3.0 GeV, reflecting the change of
the limiting behavior of the lattice correlation h̃(z, Pz, a)
at large zPz shown in Fig. 2.

Our final isovector quark helicity distribution, ob-
tained at the largest proton momentum of 3 GeV, is
shown in Fig. 4. The statistical error (with the excited-
state contamination subtracted based on two-state fits)
is shown as the red band. The systematic uncertainty,
shown combined in total with statistical one as the gray
band in Fig. 4, is obtained partly by varying the scales in
the NPR for µR 2 {2.3, 3.7} GeV and p

R
z 2 {1.3, 3} GeV.

The error from one-loop matching inversion is estimated
by the second-order correction. The systematics associ-
ated with lattice spacing a (discrete action, mismatching
in valence and sea fermions, and rotational symmetry vi-
olation, etc) and with finite volume e↵ects are estimated
to be conservatively about 8% and 5%, respectively, al-
lowing a factor of 2-3 larger than the first-moment cal-
culation itself in Ref. [40] to account for the unknown
x-dependence and Lorentz-boost e↵ect (see below). The
target-mass correction from Ref. [24] is found to be neg-

ligible for all three nucleon momenta, again indicating
small higher-twist contributions. Also shown in the fig-
ure are the phenomenological fits from NNPDFpol1.1 [2]
and JAM [3]. The present calculation is consistent with
experiment within 1� in the large-x region. For x very
close to 1, the calculation is in principle limited by the
finite lattice spacing e↵ect at large Pz, where the proton
needs be resolved with a finer longitudinal scale because
of Lorentz contraction. However, the consistency of data
at small zPz in Fig. 2 indicates that moderate Pz may be
su�cient for an accurate result. For x < 0.1, the present
calculation is limited by the accuracy of large-zPz data.
As in experiment, determining the small-x PDFs requires
large-momentum hadrons.

LP3

NNPDF1.1pol
JAM17
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FIG. 4. The red line is the MS-scheme isovector quark he-
licity PDF at scale µ = 3 GeV, extracted from LaMET at
the largest proton momentum (3 GeV), compared with fits
by NNPDFpol1.1 [2] and JAM [3]. The red band contains
statistical error while the gray band also includes estimated
systematics from finite lattice spacing, finite volume, higher-
twist corrections, as well as renormalization scale uncertain-
ties.

The present calculation shows the potential impact of
lattice simulations combined with the LaMET approach
in determining PDFs. The JLab 12-GeV program is
well positioned to make large-x determinations of po-
larized and unpolarized parton distributions, which are
extremely valuable to interpret large PT events at the
Large Hadron Collider. Lattice calculations at 10% level
will already be very useful in deciding the large-x behav-
ior, cross-checking with the experimental data.
To summarize, we report a state-of-the-art isovector

quark helicity distribution using lattice-QCD simulations
at physical pion mass with proton momentum as large
as 3 GeV. With high statistics, we combined multi-state
analysis and multiple source-sink separations to remove
excited-state contamination from our analysis; its error
is reflected in our statistical uncertainty. We renormal-
ize the nucleon matrix element using the nonperturbative
RI/MOM renormalization, and perform the LaMET one-
loop matching to convert quasi-distribution to physical
distribution in the MS scheme. An estimate of the sys-
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Fig. 24. x-dependence of 〈b2⊥〉 for quarks in the proton. The
data points correspond to the results obtained in this work
for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0
−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0
dxH+(x, x, t)C

+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which

Dupré, Guidal, Niccolai,  
Vanderhaeghen,  
arXiv:1704.07330
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for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0
−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0
dxH+(x, x, t)C

+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which
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Table 1: Values of the extracted DVCS cross section: The quantity h d�
d|t| i denotes the average of the measured

differential µ+ and µ� DVCS cross sections in the indicated |t|-bin. Apart from the integration over t, the cross
section is integrated over Q2 and ⌫ and divided by the product of the respective bin widths, as indicated in Fig. 4.

|t|-bin/(GeV/c)2 h d�
d|t|i/nb(GeV/c)�2

[0.08, 0.22] 24.5±2.8stat
+3.7
�2.9

��
sys

[0.22, 0.36] 12.6±2.0stat
+2.2
�1.5

��
sys

[0.36, 0.50] 7.4±1.6stat
+1.3
�0.9

��
sys

[0.50, 0.64] 4.1±1.3stat
+1.0
�0.5

��
sys

into the average transverse extension of partons in the proton, as probed by DVCS:
q
hr2

?i= (0.58 ± 0.04stat
+ 0.01
� 0.02

��
sys) fm. (9)

Figure 5 shows a compilation of DVCS results obtained by high-energy experiments, on the t-slope
parameter B or equivalently on the average squared transverse extension of partons in the proton, hr2

?i.
We note that the results of the HERA collider experiments H1 [10, 11] and ZEUS [12] were obtained at
higher values of Q2 as compared to that of the COMPASS measurement. The latter probes the transverse
extension of partons in the proton at hxBji/2 ⇡ 0.03, while the measurements at HERA are sensitive to
xBj values below 0.003.
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Figure 5: Results from COMPASS and previous measurements by H1 [10, 11] and ZEUS [12] on the t-slope
parameter B, or equivalently the average squared transverse extension of partons in the proton, hr2

?i, as probed by
DVCS at the proton longitudinal momentum fraction xBj/2 (see text).

In order to reliably determine the full xBj-dependence of the transverse extension of partons in the pro-
ton, a global phenomenological analysis appears necessary. The existing results from the different ex-
periments at HERA, CERN, and JLab must be evolved to a common value of Q2 and all necessary
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The pressure distribution inside the proton
V. D. Burkert1*, L. Elouadrhiri1 & F. X. Girod1

The proton, one of the components of atomic nuclei, is composed 
of fundamental particles called quarks and gluons. Gluons are the 
carriers of the force that binds quarks together, and free quarks 
are never found in isolation—that is, they are confined within 
the composite particles in which they reside. The origin of quark 
confinement is one of the most important questions in modern 
particle and nuclear physics because confinement is at the core of 
what makes the proton a stable particle and thus provides stability to 
the Universe. The internal quark structure of the proton is revealed 
by deeply virtual Compton scattering1,2, a process in which electrons  
are scattered off quarks inside the protons, which  subsequently 
emit high-energy photons, which are detected in coincidence 
with the scattered electrons and recoil protons. Here we report a 
measurement of the pressure distribution experienced by the quarks 
in the proton. We find a strong repulsive pressure near the centre of 
the proton (up to 0.6 femtometres) and a binding pressure at greater 
distances. The average peak pressure near the centre is about 1035 
pascals, which exceeds the pressure estimated for the most densely 
packed known objects in the Universe, neutron stars3. This work 
opens up a new area of research on the fundamental gravitational 
properties of protons, neutrons and nuclei, which can provide access 
to their physical radii, the internal shear forces acting on the quarks 
and their pressure distributions.

The basic mechanical properties of the proton are encoded in the 
gravitational form factors (GFFs) of the energy–momentum tensor1,4,5. 
Graviton–proton scattering is the only known process that can be used 
to directly measure these form factors4,6, whereas generalized parton 
distributions2,7,8 enable indirect access to the basic mechanical prop-
erties of the proton2.

A direct determination of the quark pressure distribution in the pro-
ton (Fig. 1) requires measurements of the proton matrix element of the 
energy–momentum tensor9. This matrix element contains three scalar 
GFFs that depend on the four-momentum transfer t to the proton. 
One of these GFFs, d1(t), encodes the shear forces and pressure distri-
bution on the quarks in the proton, and the other two, M2(t) and J(t), 
encode the mass and angular momentum distributions. Experimental 
information on these form factors is essential to gain insight into the 
dynamics of the fundamental constituents of the proton. The frame-
work of generalized parton distributions (GPDs)2,7,8 has provided a way 
to obtain information on d1(t) from experiments. The most effective 
way to access GPDs experimentally is deeply virtual Compton scat-
tering (DVCS)1,2, where high-energy electrons (e) are scattered from 
the protons (p) in liquid hydrogen as e p → e′ p′ γ, and the scattered 
electron (e′), proton (p′) and photon (γ) are detected in coincidence. 
In this process, the quark structure is probed with high-energy virtual 
photons that are exchanged between the scattered electron and the 
proton, and the emitted (real) photon controls the momentum transfer 
t to the proton, while leaving the proton intact. Recently, methods have 
been developed to extract information about the GPDs and the related 
Compton form factors (CFFs) from DVCS data10–13.

To determine the pressure distribution in the proton from the experi-
mental data, we follow the steps that we briefly describe here. We note 
that the GPDs, CFFs and GFFs apply only to quarks, not to gluons.
(1) We begin with the sum rules that relate the Mellin moments of the 
GPDs to the GFFs1.

(2) We then define the complex CFF, H, which is directly related to the 
experimental observables describing the DVCS process, that is, the 
differential cross-section and the beam-spin asymmetry.
(3) The real and imaginary parts of H can be related through a disper-
sion relation14–16 at fixed t, where the term D(t), or D-term, appears as 
a subtraction term17.
(4) We derive d1(t) from the expansion of D(t) in the Gegenbauer  
polynomials of ξ, the momentum transfer to the struck quark.
(5) We apply fits to the data and extract D(t) and d1(t).
(6) Then, we determine the pressure distribution from the relation 
between d1(t) and the pressure p(r), where r is the radial distance from 
the proton’s centre, through the Bessel integral.

The sum rules that relate the second Mellin moments of the chiral- 
even GPDs to the GFFs are1:

∫ ξ ξ+ =x H x t E x t x J t[ ( , , ) ( , , )]d 2 ( )

∫ ξ ξ= +xH x t x M t d t( , , )d ( ) 4
5

( )2
2

1

1Thomas Jefferson National Accelerator Facility, Newport News, VA, USA. *e-mail: burkert@jlab.org
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Fig. 1 | Radial pressure distribution in the proton. The graph shows 
the pressure distribution r2p(r) that results from the interactions of the 
quarks in the proton versus the radial distance r from the centre of the 
proton. The thick black line corresponds to the pressure extracted from 
the D-term parameters fitted to published data22 measured at 6 GeV. The 
corresponding estimated uncertainties are displayed as the light-green 
shaded area shown. The blue area represents the uncertainties from all the 
data that were available before the 6-GeV experiment, and the red shaded 
area shows projected results from future experiments at 12 GeV that will 
be performed with the upgraded experimental apparatus30. Uncertainties 
represent one standard deviation.
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Tantalizing results. Need more solid underpinning.

The study of the multidimensional structure of the proton can in 
principle allow us to access the proton energy-momentum 
tensor

…
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Interaction of the nucleon with gravity  

Let

gµ⌫(x) = ⌘µ⌫ + �gµ⌫(~r)

Than the response of the nucleon to the static change of the space-time metric
is characterised by static EMT (Breit frame):
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Nucleon gravitational form factors from instantons: forces between quark and gluon
subsystems
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Using the instanton picture of the QCD vacuum we compute the nucleon c̄Q(t) form factor of the
quark part of the energy momentum tensor (EMT). This form factor describes the non-conservation
of the quark part of EMT and contributes to the quark pressure distribution inside the nucleon.
Also it can be interpreted in terms of forces between quark and gluon subsystems inside the nucleon.
We show that this form factor is parametrically small in the instanton packing fraction. Numerically
we obtain for the nucleon EMT a small value of c̄Q(0) ' 1.4 · 10�2 at the low normalisation point
of ⇠ 0.4 GeV2. This smallness implies interesting physics picture – the forces between quark and
gluon mechanical subsystems are smaller than the forces inside each subsystem. The forces from
side of gluon subsystem squeeze the quark subsystem – they are compression forces. Additionally,
the smallness of c̄Q(t) might justify Teryaev’s equipartition conjecture. We estimate that the
contribution of c̄Q(t) to the pressure distribution inside the nucleon is in the range of 1�20% relative
to the contribution of the quark D-term.

INTRODUCTION

The hadron form factors of energy momentum tensor (EMT) were introduced in 1960’s in Refs. [1, 2] to study the
behaviour of hadrons in curved space-time and to obtain the basic mechanical properties of them. Nowadays the
interest to EMT form factors increased as they can be, in principle, accessed in hard exclusive processes without
invoking very weak gravitational forces and in this way to study in details the mechanical properties of the hadrons.

The symmetric QCD energy-momentum tensor operators for quark and gluon can be obtained by varying the QCD
action in respect to the metric of curved space-time, it has the following form
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The nucleon matrix element of individual pieces of EMT operator can be parameterized as the following expression,
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We introduced the notation a{µb⌫} = aµb⌫ + a⌫bµ for simplicity, as well as P = (p0 + p)/2, � = p
0 � p. The spinors

satisfy the normalization condition, ū(p, s)u(p, s) = 2MN where MN is the nucleon mass. Due to EMT conservation,
Eq. (3), the constraint

P
a c̄

a(t) = 0 holds
The physics interpretation of the EMT form factors, their calculation in various models, and extraction from

experimental data were extensively discussed in recent review [3]. Here we concentrate on the form factor c̄Q(t) =P
a=u,d,s,... c̄

a(t), which describes the non-conservation of EMT for individual quark and gluon pieces. This form factor
is important to determine the pressure forces distribution in the nucleon individually for quarks and gluons, and to
study the forces between quark and gluon subsystems in the nucleon. The form factor c̄Q(t) is the least studied, we
are aware only about the calculation of c̄Q(t) in the bag model with the result of c̄Q(0) ' �1/4 [4]. The value resulted
from the relation c̄

Q(0) = �A
Q(0)/4 in the bag model [4], however the authors of [4] stressed that this relation is not

true in QCD because the renormalised quark part of the energy-momentum tensor has a trace anomaly. The relations
of c̄Q(t) to twist-4 generalised parton distributions (GPDs) were derived in Refs. [5, 6, 9].
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0

A

a(t)
PµP⌫

MN
+ J

a(t)
i P{µ�⌫}⇢�

⇢

2MN
+D

a(t)
�µ�⌫ � gµ⌫�2

4MN
+MN c̄

a(t)gµ⌫

�
u e

i(p0�p)x (4)

We introduced the notation a{µb⌫} = aµb⌫ + a⌫bµ for simplicity, as well as P = (p0 + p)/2, � = p
0 � p. The spinors
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Fig. 8. Compare the resummation prediction for Z boson production at the LHC.49–51 The data
in left one is from the ATLAS collaboration, the right one is for CMS collaboration. These data
are not included in our fit.

parameters are fitted only with the Drell–Yan type data. From the comparison to
the experimental data, we can see that the new form is equally good as compared
to the original BLNY parametrization.

4. Fitting Semi-Inclusive DIS Data with New Parametrization

The universality of the parton distribution functions (PDFs) is a powerful prediction
from QCD factorization. According to the TMD factorization, the nonperturbative
functions determined for the TMD quark distributions from the Drell–Yan type
of processes shall apply to that in the SIDIS processes. Of course, the transverse
momentum distribution of hadron production in DIS processes also depends on
the final state fragmentation functions, which we will parametrize. Following the
universality argument, we introduce the following parametrization form to describe
the nonperturbative form factors for SIDIS processes,

S(DIS)
NP = g2 ln(b/b∗) ln(Q/Q0) + g1b

2/2 + g3(x0/xB)
λ + ghb

2/z2h . (16)

In the above parametrization, named as SIYY-2 form, g1, g2 and g3 have been
determined from the experimental data of Drell–Yan lepton pair production. The
only unknown parameter gh will be determined by fitting to the HERMES and
COMPASS data. Although there has been evidence from a recent study34 that gh
could be different for the so-called favored and dis-favored fragmentation functions,
we will take them to be the same in this study, for simplicity. With more data
coming out in the future, we should be able to fit with separate parameters.

In principle, we can fit g1, g2, g3, and gh together to both Drell–Yan and SIDIS
data. However, the DIS data do not cover large range ofQ2. In addition, the differen-
tial cross-sections in SIDIS depend on the fragmentation function, which themselves
are not well constrained at the present time. Therefore, in this paper, we will take
the parameters g(1,2,3) fitted to the Drell–Yan data to compare to the SIDIS to
check if they are consistent with the SIDIS data.
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Z boson production at the LHC

➤ TMD factorization (with an appropriate matching to collinear results) aims at an 
accurate description (and prediction) of a differential in qT cross section in a 
wide range of qT


➤ LHC results at 7 and 13 TeV are accurately predicted from fits of lower energies


Sun, Isaacson, Yuan, Yuan Int.J.Mod.Phys.A 33 
(2018)
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Figure 2. Ratio of theoretical and experimental points as a function of the binned di-lepton transverse

momentum for the measured at ATLAS in the range 66 < Q < 116 GeV (dashed red lines). The exper-

imental points (blue dots) are surrounded by a box describing their error. The representation takes into

account the shifts as described in the text.

Figure 3. Ratio of theoretical and experimental points as a function of the binned di-lepton transverse

momentum for the measured at CMS and LHCb experiments (dashed red lines). The experimental points

(blue dots) are surrounded by a box describing their error. The representation takes into account the shifts

as described in the text.

due to large systematic uncertainties for this data. The reported correlated systematic error for
E288(E605, E772) experiments is 25%(15%, 10%) [35, 55, 56]. This systematic discrepancy has been
recently discussed in [68], where it was connected to the fixed-target nature of these experiments.

5.2 Extracted values of TMDPDF and rapidity anomalous dimension

We now turn to the values of the TMDPDFs and rapidity anomalous dimension as extracted from
the fit. Our results for the non-perturbative parameters are presented in tab. 4. The central values
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Figure 7. Comparison between experimental data for the ATLAS 8TeV measurements in the
bin 66GeV < Q < 116GeV and 1.6 < |y| < 2 and the theoretical predictions obtained from the
fits to all perturbative orders considered in this analysis, i.e. NLL′, NNLL, NNLL′, and N3LL (see
section 2.4). The layout of the plot is the same as in figure 4.

is necessary to include higher perturbative corrections to obtain a good description of the

data and that N3LL corrections are still significant. On the other hand, it appears that

the perturbative series is nicely converging and N3LL accuracy seems appropriate within

the current experimental uncertainties.

In order to quantify the numerical impact of higher-order corrections, in figure 7 we

compare the predictions for all the available perturbative orders to the ATLAS 8TeV data

in the bin 66GeV < Q < 116GeV and 1.6 < |y| < 2. This plot shows how the inclusion

of higher-order corrections improves the shape of the predictions, particularly around the

peak region.

4.4 Reduced dataset and x dependence

The non-perturbative function fNP, eq. (2.36), accounts for the large-bT behaviour of

TMDs. It is in general a function of bT , ζ, and x. While the asymptotic dependence

on bT is driven by first-principle considerations (see section 2.5) and the evolution with ζ is

determined by the Collins-Soper equation (2.11), the dependence on x is totally unknown.

Moreover, a direct access to the x dependence is particularly difficult to achieve because it

requires cross-section data finely binned in rapidity y. In the dataset considered here, only

the ATLAS experiment delivers data differential in rapidity. Therefore, one would expect

that these datasets provide most of the sensitivity to the x dependence of TMDs.

In order to test this conjecture, we employed a particularly simple x-independent pa-

rameterisation of the non-perturbative function:

fDWS
NP (bT , ζ) = exp

[
−1

2

(
g1 + g2 ln

(
ζ

2Q2
0

))
b2T

]
, (4.2)

– 25 –



Unpolarized cross section

UNPOLARIZED TMD MEASUREMENTS

27

➤ Addresses the question of partonic confined motion


➤ Evolution with x and Q2

➤ Flavor dependence of unpolarized TMDs


➤ Interplay with collinear QCD at large qT 
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Figure 8. The down quark TMD PDF in b-space(left) and kT -space(right) presented at different values of

x. The color shows the size of the uncertainty relative the value of distribution.

6 Conclusions

We have extracted the unpolarized transverse momentum dependent parton distribution function
(TMDPDF) and rapidity anomalous dimension (also known as Collins-Soper kernel) from Drell-Yan
data. The analysis has been performed in the ⇣-prescription with NNLO perturbative inputs. We
have also provided an estimation of the errors on the extracted functions with the replica method.
The values of TMDPDF and rapidity anomalous dimension, together with the code that evaluates
the cross-section, are available at [45], as a part of the artemide package. We plan to release grids
for TMDPDFs extracted in this work also through the TMDlib [69].

Theoretical predictions are based on the newly developed concepts of ⇣-prescription and op-
timal TMD proposed in ref. [27]. This combination provides a clear separation between the non-
perturbative effects in the evolution factor and the intrinsic transverse momentum dependence.
Additionally, the ⇣-prescription permits the usage of different perturbative orders in the collinear
matching and TMD evolution. For that reasons, the precise values of the rapidity anomalous di-
mension (±1%(4%, 6%) accuracy at b = 1(3, 5) GeV�1) are relevant for any observable that obeys
TMD evolution.

In our analysis, we have included a large set of data points, which spans a wide range of
energies (4 < Q < 150 GeV) and x (x > 10�4), see fig. 1. The data set can be roughly split into
the low-energy data, which includes experiments E288, E605, E772 and PHENIX at RHIC, and
the high-energy data from Tevatron (CDF and D0) and LHC (ATLAS, CMS, LHCb) in similar
proportion. To exclude the influence of power corrections to TMD factorization we consider only
the low-qT part of the data set, as described in sec. 3. A good portion of data is included in the fit
of TMD distributions for the first time, that is the data from E772, PHENIX, some parts of ATLAS
and D0 data. For the first time, the data from LHC have been included without restrictions (the
only previous attempt to include LHC data in a TMDPDF fit is [13], where systematic uncertainties
and normalization has been treated in a simplified manner). We have shown that the inclusion of
LHC data greatly restricts the non-perturbative models at smaller b (b . 2 GeV�1) and smaller x

(x . 0.05), and therefore they are highly relevant for studies of the intrinsic structure of hadrons.
A detailed comparison of fits with and without LHC data has been discussed in sec. 5.

The extracted TMDPDF shows a non-trivial x-dependence that is not dictated only by the
collinear asymptotic limit of PDFs. In particular, we find that the unpolarized TMDPDF is bigger
(in impact parameter space) at larger x, see fig. 7. This indirectly implies a smaller value of the
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– Orbital motion. Most TMDs would vanish in the ab-
sence of parton orbital angular momentum, and thus
enable us to quantify the amount of orbital motion.

– Spin-orbit correlations. Most TMDs and related ob-
servables are due to couplings of the transverse mo-
mentum of quarks with the spin of the nucleon (or
the quark). Spin-orbit correlations in QCD, akin to
those in hydrogen atoms and topological insulators,
can therefore be studied.

– Gauge invariance and universality. The origin of some
TMDs and related spin asymmetries, at the partonic
level, depend on fundamental properties of QCD, such
as its color gauge invariance. This leads to clear differ-
ences between TMDs in different processes, which can
be experimentally tested.

The “simplest” TMD is the unpolarized function
fq
1 (x, kT ), which describes, in a fast moving nucleon,

the probability of finding a quark carrying the longitu-
dinal momentum fraction x of the nucleon momentum,
and a transverse momentum kT = |kT |. It is related to
the collinear (“integrated”) PDF by

∫
d2kT fq

1 (x, kT ) =
fq
1 (x). In addition to fq

1 (x, kT ), there are two other TMDs:
gq
1L(x, kT ) and hq

1(x, kT ), whose integrals correspond to
the collinear PDFs: the longitudinal polarized structure
function discussed in the previous section and the quark
transversity distribution. The latter is related to the ten-
sor charge of the nucleon. These three distributions can
be regarded as a simple transverse-momentum extension
of the associated integrated quark distributions. More im-
portantly, the power and rich possibilities of the TMD
approach arise from the simple fact that kT is a vector,
which allows for various correlations with the other vectors
involved: the nucleon momentum P , the nucleon spin S,
and the parton spin (say a quark, sq). Accordingly, there
are eight independent TMD quark distributions as shown
in fig. 16. Apart from the straightforward extension of the
normal PDFs to the TMDs, there are five TMD quark
distributions, which are sensitive to the direction of kT ,
and will vanish with a simple kT integral.

Because of the correlations between the quark trans-
verse momentum and the nucleon spin, the TMDs natu-
rally provide important information on the dynamics of
partons in the transverse plane in momentum space, as
compared to the GPDs which describe the dynamics of
partons in the transverse plane in position space. Mea-
surements of the TMD quark distributions provide infor-
mation about the correlation between the quark orbital
angular momentum and the nucleon/quark spin because
they require wave function components with nonzero or-
bital angular momentum. Combining the wealth of infor-
mation from all of these functions could thus be invalu-
able for disentangling spin-orbit correlations in the nu-
cleon wave function, and providing important information
about the quark orbital angular momentum. One partic-
ular example is the quark Sivers function f⊥q

1T which de-
scribes the transverse-momentum distribution correlated
with the transverse polarization vector of the nucleon.
As a result, the quark distribution will be azimuthally
asymmetric in the transverse-momentum space in a trans-

Fig. 17. The density in the transverse-momentum plane for
unpolarized quarks with x = 0.1 in a nucleon polarized along
the ŷ direction. The anisotropy due to the proton polarization
is described by the Sivers function, for which the model of [79]
is used. The deep red (blue) indicates large negative (positive)
values for the Sivers function.

versely polarized nucleon. Figure 17 demonstrates the de-
formations of the up and down quark distributions. There
is strong evidence of the Sivers effect in the DIS experi-
ments observed by the HERMES, COMPASS, and JLab
Hall A collaborations [80–82]. An important aspect of the
Sivers functions that has been revealed theoretically in last
few years is the process dependence and the color gauge
invariance [83–86]. Together with the Boer-Mulders func-
tion, they are denoted as naive time-reversal odd (T -odd)
functions. In SIDIS, where a leading hadron is detected
in coincidence with the scattered lepton, the quark Sivers
function arises due to the exchange of (infinitely many)
gluons between the active struck quark and the remnants
of the target, which is referred to as final-state interaction
effects in DIS. On the other hand, for the Drell-Yan lep-
ton pair production process, it is due to the initial-state
interaction effects. As a consequence, the quark Sivers and
Boer-Mulders functions differ by a sign in these two pro-
cesses. This non-universality is a fundamental prediction
from the gauge invariance of QCD [84]. The experimental
check of this sign change is currently one of the outstand-
ing topics in hadronic physics, and Sivers functions from
the Drell-Yan process can be measured at RHIC.

2.3.2 Opportunities for measurements of TMDs at the EIC

To study the transverse-momentum–dependent parton
distributions in high-energy hadronic processes, an addi-
tional hard momentum scale is essential, besides the trans-
verse momentum, for proper interpretation of results. This
hard momentum scale needs to be much larger than the
transverse momentum. At the EIC, DIS processes natu-
rally provide a hard momentum scale: Q, the virtuality
of the photon. More importantly, the wide range of Q2

values presents a unique opportunity to systematically in-
vestigate the strong interaction dynamics associated with
the TMDs. Although there has been tremendous progress
in understanding TMDs, without a new lepton-hadron col-
lider, many aspects of TMDs will remain unexplored —or
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Sivers function

➤ Describes unpolarized quarks inside of 
transversely polarized nucleon 


➤ Encodes the correlation of orbital motion 
with the spin

POLARIZED TMD FUNCTIONS

➤ Sign change of Sivers function is 
fundamental consequence of QCD 


Brodsky, Hwang, Schmidt (2002), Collins (2002)
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FIG. 2. The density distribution ⇢ap" of an unpolarized quark with flavor a in a proton polarized along the +y direction and
moving towards the reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down
quark. Upper panels for results at x = 0.1, lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68%
uncertainty band of the distribution at ky = 0 (where the effect of the distortion due to the Sivers function is maximal) while
left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized proton). Results in the contour plots
and the solid lines in the projections correspond to replica 105.

induced distortion is positive along the +x direction for
the up quark (left panels), and opposite for the down
quark (right panels).

At x = 0.1 the distortion due to the Sivers effect is
evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is opposite for
up and down quarks, reflecting the opposite sign of the
Sivers function. It is more pronounced for down quarks,
because the Sivers function is larger and at the same time
the unpolarized TMD is smaller. At lower values of x, the
distortion disappears. These plots suggest that a virtual
photon hitting a transversely polarized proton effectively
“sees” more up quarks to its right and more down quarks
to its left in momentum space. The peak positions are ap-
proximately (kx)max ⇡ 0.1 GeV for up quarks and �0.15
GeV for down quarks. To have a feeling of the order of
magnitude of this distortion, we can estimate the expres-
sion eq/(kx)max ⇡ 2 ⇥ 10�34C ⇥ m ⇡ 0.6 ⇥ 10�4 debye,

which is about 3 ⇥ 10�5 times the electric dipole of a
water molecule.

The existence of this distortion requires two ingredi-
ents. First of all, the wavefunction describing quarks
inside the proton must have a component with nonvan-
ishing angular momentum. Secondly, effects due to final
state interactions should be present [36], which in Feyn-
man gauge can be described as the exchange of Coulomb
gluons between the quark and the rest of the proton [37].
In simplified models [38], it is possible to separate these
two ingredients and obtain an estimate of the angular
momentum carried by each quark [39]. It turns out that
up quarks give almost 50% contribution to the proton’s
spin, while all other quarks and antiquarks give less than
10% [14]. We will leave this model-dependent study to
a future publication. A model-independent estimate of
quark angular momentum requires the determination of
parton distributions that depend simultaneously on mo-

A. Bacchetta, F. Delcarro, C. Pisano, M. Radici (2020)
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(a) (b)

(c) (d)

Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function

⇢1;q h"(x,kT ,ST , µ) = f1;q h(x, kT ; µ, µ
2) �

kTx

M
f
?
1T ;q h(x, kT ; µ, µ

2), (4.7)

where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can
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FIG. 2. The density distribution ⇢ap" of an unpolarized quark with flavor a in a proton polarized along the +y direction and
moving towards the reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down
quark. Upper panels for results at x = 0.1, lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68%
uncertainty band of the distribution at ky = 0 (where the effect of the distortion due to the Sivers function is maximal) while
left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized proton). Results in the contour plots
and the solid lines in the projections correspond to replica 105.

induced distortion is positive along the +x direction for
the up quark (left panels), and opposite for the down
quark (right panels).

At x = 0.1 the distortion due to the Sivers effect is
evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is opposite for
up and down quarks, reflecting the opposite sign of the
Sivers function. It is more pronounced for down quarks,
because the Sivers function is larger and at the same time
the unpolarized TMD is smaller. At lower values of x, the
distortion disappears. These plots suggest that a virtual
photon hitting a transversely polarized proton effectively
“sees” more up quarks to its right and more down quarks
to its left in momentum space. The peak positions are ap-
proximately (kx)max ⇡ 0.1 GeV for up quarks and �0.15
GeV for down quarks. To have a feeling of the order of
magnitude of this distortion, we can estimate the expres-
sion eq/(kx)max ⇡ 2 ⇥ 10�34C ⇥ m ⇡ 0.6 ⇥ 10�4 debye,

which is about 3 ⇥ 10�5 times the electric dipole of a
water molecule.

The existence of this distortion requires two ingredi-
ents. First of all, the wavefunction describing quarks
inside the proton must have a component with nonvan-
ishing angular momentum. Secondly, effects due to final
state interactions should be present [36], which in Feyn-
man gauge can be described as the exchange of Coulomb
gluons between the quark and the rest of the proton [37].
In simplified models [38], it is possible to separate these
two ingredients and obtain an estimate of the angular
momentum carried by each quark [39]. It turns out that
up quarks give almost 50% contribution to the proton’s
spin, while all other quarks and antiquarks give less than
10% [14]. We will leave this model-dependent study to
a future publication. A model-independent estimate of
quark angular momentum requires the determination of
parton distributions that depend simultaneously on mo-

The shift in the transverse plane is generated by the Sivers function and GPD E that 
cannot exist without OAM

The opposite signs of the shift is consistent with lattice QCD findings on the opposite 
signs of the OAM for u and d quarks

one (5.10) and a distortion in y direction that is governed by the strength of GPD E,

q*(x,~b,Q2) = q(x,~b,Q2)� 1

2Mp

@

@by
E(x,~b,Q2) (5.11)

=
1

4⇡

Z 1

0
d|t|

"
J0
⇣
b
p
|t|
⌘
H +

by
p
|t|

2bMp
J1
⇣
b
p
|t|
⌘
E

#
(x, ⌘ = 0, t,Q2) .

Before we present the resulting parton densities (5.10) from the combined GPD model

fit to HERA and EIC pseudo data, let us shortly discuss the peculiarities in the uncertainty

estimation. The uncertainty of the resulting parton densities is, besides the propagated

experimental uncertainties, also dictated by the possible uncertainties caused by extrap-

olations from the accessible kinematical region, namely, (i) extrapolation of the skewness

parameter dependence ⌘ = x to ⌘ = 0, discussed above, (ii) extrapolation of t-dependence

from the experimental minimal �t value �t1 to �t = 0, as well as (iii) from maximal acces-

sible value �t2 to �t = 1. These rather intricate extrapolations are fortunately governed

by the boundary condition,

q(x,Q2) = H(x, ⌘ = 0, t = 0,Q2) =

ZZ 1

�1
d2~b q(x,~b,Q2), (5.12)

arising from the reduction of GPD H in the kinematical forward limit to the standard

unpolarized PDF q. Hence, the normalization of the (integrated) parton density (5.10)

is also entirely determined by the PDF normalization. To simplify our study, we restrict

ourselves to Q2 = 4GeV2, where in our model the t- and skewness dependencies factorize,

as discussed above and exemplified also by the agreement of the e↵ective slope parameters

in the ⌘ = x and ⌘ = 0 case, see thick solid curves on the left and right panels on Fig. 16.

A model analysis studying the challenges of extrapolation in �t beyond the exper-

imentally accessible range has been presented for the di↵erential cross section in [153]

and we essentially agree with the conclusion that with an EIC imaging is feasible for

0.1 fm . b . 1.5 fm (or even in a wider range). Let us add some mathematical insight and

let us point out methods to increase the quality of the extrapolations. With our model

hypothesis the t-dependence of the zero-skewness GPD is essentially constrained by the

EIC pseudo data in the region 0.03GeV2  �t  1.5GeV2.

The uncertainty of the extrapolation into the region [0,�t1) is associated with the

contribution

�1q(x,~b,Q2) =
1

4⇡

Z |t1|

0
d|t| J0

⇣
b
p
|t|
⌘
H(x, ⌘ = 0, t,Q2) , (5.13)

from which one can easily obtain estimates. Although q(x,Q2) = H(x, ⌘ = 0, t,Q2) at t = 0

is very well known, which makes this an interpolation problem rather then an extrapolation
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dipole form to ⇠ 40%. To reach the 10% accuracy level, one must increase �t2 ⇠ 8GeV2,

which requires a big Q2 value to ensure the validity of DVCS kinematics. Fortunately, the

error, e.g., for 0.1 fm  b, gets already on the 10% level for �t2 ⇠ 3.5GeV2. Under these

circumstances, one may rely on extrapolation techniques, e.g., based on conformal mapping

or Padé approximation, to minimize the uncertainty. Note also that the uncertainty of

extrapolation into the {�t2,1] region may be also associated with a relative uncertainty

that grows fast with increasing b. In the following the uncertainty is calculated according to

(5.17) and estimate numerically by assuming two alternative hypotheses, namely, that the

t-dependence falls o↵ exponentially or with 1/t2, where for a given b value always the larger

uncertainty is taken. For simplicity we will neglect the uncertainty from the extrapolation

(interpolation) into the region {�t1, 0], which is entirely justified for b  1 fm and as it

would be hardly visible in the visualization of the parton densities for b  1.5 fm. Finally,

the uncertainty from the extrapolation into the large �t region was added in quadrature

to the one propagated from the (pseudo) data.
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Figure 17. Parton densities at x = 0.001 and Q2 = 4GeV2 versus impact parameter b were

obtained from a combined least-squares fit to the HERA collider and EIC pseudo data: relative

densities (lower row) and their values at bx = 0 for the unpolarized sea quark parton densities of

a unpolarized proton (left), a transversely polarized proton (middle), and the unpolarized gluon

parton density of a unpolarized proton (right), its value is rescaled by a factor 0.19.

In the left and right columns on Fig. 17 the sea quark and gluon parton densities (5.10)

at x = 10�3 and Q2 = 4GeV2 are shown as a relative density plot versus by and bx (lower

panels) and for bx = 0 as function of by (upper panels). Note, the gluon density is rescaled
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➤ The only source of information on tensor charge of the nucleon

TRANSVERSITY h

�q ⌘ gqT =

Z 1

0
dx

⇥
hq
1(x,Q

2)� hq̄
1(x,Q

2)
⇤

D. PitonyakD. Pitonyak

�q⌘
Z 1

0
dx [hq

1(x)� hq̄
1(x)] gT ⌘ �u� �d
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The tensor charge of the nucleon is one of its fundamental charges and is important 
for BSM studies (beta decay, EDM).  Processes sensitive to TMDs can play an 

important role in these efforts (Courtoy, et al. (2015); Yamanaka, et al. (2017), Liu, 
et al. (2018),…).  Lattice QCD has also calculated the tensor charges with great 
precision (Gupta, et al. (2018); Hasan, et al. (2019), Alexandrou, et. (2019),…).

TMDs

BSM Lattice

Tensor 
charge

8

➤ Tensor couplings, not present in the SM Lagrangian, could be the footprints 
of new physics at higher scales

β-decays and BSM physics

Ten effective couplings

E << Λ

1/Λ2  GF ~ g2Vij/Mw2 ~1/v2

• In the SM,  W exchange (V-A, universality)

εT gT ≈ MW2 / MBSM2

Bhattacharya et al, PRD 85 (12)

Pattie et al., P.R. C88 (13)

➤ Tensor charge is extensively studied on the lattice Gupta et al, (18), Alexandrou et al., (19)
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Table 1
Summary of the data used in our analysis, including the number of points (Npts.) in each reaction. (Top) EIC pseudo-data for the Collins effect in SIDIS for different polarized 
beam types, CM energies, and final states. (Bottom) Data used in the original JAM20 global analysis of SSAs.

EIC Pseudo-data

Observable Reactions CM Energy (
√

S) Npts.

Collins (SIDIS) e + p↑ → e + π± + X

141 GeV
756 (π+)

744 (π−)

63 GeV
634 (π+)

619 (π−)

45 GeV
537 (π+)

556 (π−)

29 GeV
464 (π+)

453 (π−)

Collins (SIDIS) e + 3He↑ → e + π± + X

85 GeV
647 (π+)

650 (π−)

63 GeV
622 (π+)

621 (π−)

29 GeV
461 (π+)

459 (π−)

Total EIC Npts. 8223

JAM20 [13]

Observable Reactions Experimental Refs. Npts.

Sivers (SIDIS) e + (p,d)↑ → e + π±/π0 + X [24,27,47] 126
Sivers (DY) π−+ p↑ → µ++ µ− + X [50] 12
Sivers (DY) p↑ + p → W ±/Z + X [48] 17

Collins (SIDIS) e + (p,d)↑ → e + π±/π0 + X [24,25,27] 126
Collins (SIA) e+ + e− → π++ π− + X [30–33] 176

AN p↑ + p → π±/π0 + X [51–54] 60

Total JAM20 Npts. 517

Note that %pT is the transverse momentum of the produced hadron 
with respect to the fragmenting parton. We allow for favored and 
unfavored Collins functions.

The Gaussian transverse momentum parameterizations (2), (3)
of JAM20 do not have the complete features of TMD evolu-
tion [9,36,78–80] and instead assume most of the transverse mo-
mentum is non-perturbative and thus related to intrinsic proper-
ties of the colliding hadrons rather than to hard gluon radiation. 
The JAM20 analysis also implemented a DGLAP-type evolution for 
the collinear twist-3 functions analogous to Ref. [81], where a 
double-logarithmic Q 2-dependent term is explicitly added to the 
parameters. Such collinear twist-3 functions arise from the opera-
tor product expansion (OPE) of certain transverse-spin dependent 
TMDs (e.g., H⊥(1)

1 (z) enters the OPE of the Collins TMD FF [9]). For 
the collinear twist-2 PDFs and FFs (e.g., f1(x), h1(x), and D1(z)), 
the standard leading order DGLAP evolution was used. The fact 
that current data on SSAs can be described with a simple Gaus-
sian ansatz highlights the need for the tremendous Q 2 lever arm 
of the EIC. The ability to span several decades in Q 2 will help con-
strain the exact nature of TMD evolution and study the interplay 
between TMD and collinear approaches.

Our study was conducted using replicas from the JAM20 analy-
sis as priors in a fit of all the data in Table 1 (8740 total points). 
The results for the impact on the up and down transversity PDF 
h1(x) as well as the Collins function first moment H⊥(1)

1 (z) are 
shown in the top panel of Fig. 1. One clearly sees a drastic reduc-
tion in the transversity uncertainty band once EIC data is included 
compared to the original JAM20 results. Even the uncertainties for 

Fig. 1. (Top) Plot of the transversity function for up and down quarks as well as 
the favored and unfavored Collins function first moment from the JAM20 global 
analysis [13] (light red band with the dashed red line for the central value) as well 
as a re-fit that includes EIC Collins effect pion production pseudo-data for a proton 
beam only (cyan band with the dot-dashed cyan line for the central value) and 
for both proton and 3He beams together (blue band with the solid blue line for 
the central value). (Bottom) Individual flavor tensor charges δu, δd as well as the 
isovector charge gT for the same scenarios. Also shown are the results from two 
recent lattice QCD calculations [18,21] (purple). All results are at Q 2 = 4 GeV2 with 
error bands at 1-σ CL.
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Fig. 5. (Top) The ratio of the error of transversity to its central value for u, d, and u −d as a function of x at Q 2 = 4 GeV2 for JAM20 (red dashed line), JAM20+EIC pseudo-data 
(blue dash-dotted line), JAM20+SoLID pseudo-data (green dotted line), and JAM20+EIC+SoLID pseudo-data (gold solid line). (Bottom) The ratio of the error of the first moment 
of the Collins FF to its central value as a function of z for favored and unfavored Collins FF.

Fig. 6. Individual flavor tensor charges δu, δd as well as the isovector charge gT for 
the same scenarios as Fig. 5.

extraction of the tensor charges for both EIC and SoLID mea-
surements. However, the 68% CL regions for the individual flavor 
charges do not overlap. Thus, the precision of the extracted ten-
sor charges may not correspond to the same high accuracy of the 
result once there are measurements (actual data) from multiple 
facilities. The reason is an incomplete kinematical region of the 
experiments and the unavoidable parametrization bias of our ex-
traction. The parametrization bias may be tamed partly by utilizing 
more flexible parameterizations, such as neural nets. The kinemat-
ical coverage of the experiments, on the other hand, is defined by 
the experimental setup, and it is difficult (if not impossible) to 
have one experiment cover the whole kinematical region needed 
for the most accurate extraction. In addition, using data from only 
one experiment may bias the extractions, as the systematic errors 
are quite difficult to account for in an unbiased way. Therefore, 
multiple experimental measurements covering the largest possible 
kinematical region are needed to achieve a precise and simulta-
neously accurate extraction of the tensor charge. SoLID will offer 
needed complementary measurements to the EIC in order to test 
that a consistent picture emerges across multiple experiments on 
the extracted value of the tensor charge. Only when a bulk of ex-

periments give consistent central values for quantities of interest, 
like the tensor charge, can one claim to have accurate results.

5. Conclusion

In this letter, we have studied the impact on the tensor charge 
from EIC pseudo-data of the SIDIS Collins effect using the results 
of the JAM20 global analysis of SSAs [13]. Both transversely po-
larized proton and 3He beams are considered across multiple CM 
energies for charged pions in the final state. We find that the EIC 
will drastically reduce the uncertainty in both the individual fla-
vor tensor charges δu, δd as well as their isovector combination 
gT . The 3He data is especially crucial for a precise determination 
of the down quark transversity TMD PDF and for up and down fla-
vor separation. Consequently, the EIC, from the combined data in 
measurements at five different energy settings with transversely 
polarized proton and 3He beams, will allow for phenomenologi-
cal extractions of the tensor charges to be as precise as the cur-
rent lattice QCD calculations. This will ultimately show whether 
a tension exists between experimental and lattice data. In addi-
tion, we performed a similar study on SoLID pseudo-data of the 
SIDIS Collins effect to be measured in a complementary kinemat-
ical region to the EIC and found that the proposed experiment at 
Jefferson Lab will also significantly decrease the uncertainty in the 
tensor charge. The combined fit that included both EIC and SoLID 
pseudo-data provides the best constraint on transversity and the 
tensor charges, with the results for the latter more precise than 
current lattice calculations. We emphasize that a precise measure-
ment cannot always guarantee a very accurate extraction of the 
distributions, and multiple experiments, such as EIC and SoLID, 
should be performed in a wide kinematical region in order to min-
imize bias and expose any potential tensions between data sets. In 
order to minimize the bias from the global QCD fit procedure, one 
may ultimately combine the data from different ways of accessing 
transversity, such as SIDIS single hadron and the di-hadron mea-
surements. Given that the tensor charge is a fundamental charge of 
the nucleon and connected to searches for BSM physics [14,16,17], 
future precision measurements from the EIC and Jefferson Lab sen-
sitive to transversity are of utmost importance and necessary to 
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EIC data will allow to have gT 
extraction at the precision at 
the level of lattice QCD 
calculations  
 

JLab 12 data will allow to 
have complementary 
information on tensor charge 
to test the consistency of the 
extraction and expand the 
kinematical region




WIGNER DISTRIBUTIONS AND THE SPIN

33

➤ Wigner distributions have information on both position and motion  
 

➤ The most intuitive definition of OAM involves Wigner functions


➤ The gauge link makes this definition gauge invariant and the two choices:  
 
Straight link - kinetic OAM, Ji: 
 
Stapple-like link - canonical OAM, Jaffe-Manohar:


➤ The difference between the two                     is related to the torque force experienced 
by the struck quark and generated by the final state interactions


➤ How to fully access Wigner distributions in experiments is still to be explored

kT

xP
bT

C. Lorcé, B. Pasquini, X. Xiong and F. Yuan, Phys. Rev. D 85, (2012)
C. Lorcé, B. Pasquini, Phys. Rev. D 84, (2011)   

3. Complete gauge invariant decomposition

The recent controversy mentioned in the introduction was centered around whether one can con-
struct a gauge invariant alternative to the Jaffe-Manohar decomposition [5–7, 15, 16]. I will not go
through the many discussions and confusions that took place, but simply show the final result in
terms of the angular momentum tensor. One can add a different surface term than in (5) and obtain

Mµνλquark-spin = −1
2
εµνλσψ̄γ5γσψ , (8)

Mµνλquark-orbit = ψ̄γµ(xνiDλ
pure − xλiDν

pure)ψ , (9)

Mµνλgluon-spin = Fµλa Aνaphys − Fµνa Aλa
phys , (10)

Mµνλgluon-orbit = −Fµαa
(
xν(Dλ

pureAphys
α )a − xλ(Dν

pureAphys
α )a

)
, (11)

where

Aµphys(x) = −
∫

dy−K(y− − x−)WxyF+µ(y−, (x)Wyx , (12)

and Dµpure ≡ Dµ − igAµphys. In (12),Wxy is the lightlike Wilson line from y− to x− and K(y−) is either
1
2ε(y

−), θ(y−) or −θ(−y−). In the light-cone gauge, Aµphys reduces to Aµ. It is important that the same
Aµphys is consistently used in (9)–(11). One can readily check that each of these terms is separately
gauge invariant. Note that (12) is my definition of Aµphys. Other people have proposed different choices
but they are not relevant to high energy experiment. (They do not feature the experimentally measured
∆G.) Although not obvious, (12) is in fact equivalent to the Bashinsky-Jaffe prescription [12]. My
representation in terms of the field strength tensor as in (12) is more manifestly gauge invariant and
convenient for further investigations (see below).

Taking the matrix elements of (8)–(11) with (12), I obtain (1), but now all the terms are gauge
invariant and well-defined. I shall refer to this as the complete decomposition.

4. Orbital angular momentum

In order to explain the difference between the canonical OAM Lq
can and the kinetic one Lq, I find

it instructive to use the Wigner distribution

W(x,(k,(b) =
∫

dz−d(z
2(2π)3

∫
d(∆

(2π)2 eixP+z−−i(k·(z〈P′S |ψ̄((b −(z/2)γ+ψ((b +(z/2)|PS 〉 . (13)

where ∆ = P′ − P. The gluon Wigner distribution can be similarly defined. Since the Wigner dis-
tribution carries information of both transverse momentum (k and impact parameter (b, it is natural to
define an OAM via [17]

Lz =

∫
dxd2(bd2(k((b × (k)zW(x,(b,(k) . (14)

Then the question is “Which OAM is this, canonical or kinetic?” In order to answer this question,
one has to carefully define the Wigner distribution (13). To ensure gauge invariance, a Wilson line
from (b−(z/2 to (b+(z/2 is needed. A natural choice from the viewpoint of parton physics is the staple-
shaped Wilson line that goes to light-cone infinity z− = ±∞ and then comes back. If one does this,
one obtains the canonical OAM Lq

can [8]. On the other hand, if one uses a straight Wilson line from
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GPDs
FT
�! q(x,b?) ’3d imaging’

? polarization )? deformation

simultaneous info about ? position & long.
momentum

,! Ji sum rule for Jq

L
q
JM � L

q
Ji = change in OAM as quark leaves

nucleon (due to torque from FSI)

d2: ? force on quarks in DIS

,! sign and magnitude of d2
X. Ji, X. Xiong and F. Yuan, Phys. Rev. D 88, no. 1, (2013) 
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