

Theoretical aspects of fundamental symmetries and conservation laws

Vincenzo Cirigliano

LA-UR-21-28140

Outline

- Global and discrete symmetries in the Standard Model and beyond
 - High-level overview of expt. probes and their merits
- Lepton Number Violation and neutrinoless double beta decay
 - Recent theoretical developments & impact on phenomenology
- Conclusions & Outlook

The fate of symmetries in the SM

- Global symmetries:
 - U(3)⁵ symmetry of the fermion's gauge-kinetic term is broken by Yukawa couplings Y_{e,u,d}.: origin of flavor

• When the dust settles, baryon number (B) and individual lepton family numbers ($L_{\alpha=e,\mu,\tau}$) survive as "accidental" symmetries

The fate of symmetries in the SM

- Global symmetries:
 - U(3)⁵ symmetry of the fermion's gauge-kinetic term is broken by Yukawa couplings Y_{e,u,d}.: origin of flavor

$$\psi_{i} = \begin{pmatrix} \ell_{L} \\ e_{R} \\ q_{L} \\ u_{R} \\ d_{R} \end{pmatrix}_{i} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix}$$

$$(u_{L} \\ d_{L} \end{pmatrix} \qquad (u_{L} \\ d_{L} \end{pmatrix} \qquad (u_{L} \\ d_{L}) \qquad (u_{R} \\ d_{R} \end{pmatrix}_{i} (u_{R} \\ d_{R} \end{pmatrix} \qquad (u_{R} \\ (u_{R} \\ d_{R} \end{pmatrix} \qquad (u$$

- When the dust settles, baryon number (B) and individual lepton family numbers $(L_{\alpha=e,\mu,\tau})$ survive as "accidental" symmetries
- Discrete symmetries:
 - P, C maximally violated by weak interactions
 - CP (T) violated by V_{CKM} (\leftarrow Yukawa + SU(2)_W) and QCD θ -term \Rightarrow specific pattern of CPV in flavor sector and EDMs

Symmetry violation and new physics

• The SM accidental (B, $L_{e,\mu,\tau}$) and approximate (CP) symmetries are not necessarily preserved by new physics

Symmetry violation and new physics

• The SM accidental (B, $L_{e,\mu,\tau}$) and approximate (CP) symmetries are not necessarily preserved by new physics

• B, $L \equiv L_e + L_\mu + L_\tau$, $L_{e,\mu,\tau}$, CP can be probed across many energy scales

High-E

Low-E Proton decay, n-nbar oscillations, $0\nu\beta\beta, \mu \rightarrow eX, \tau \rightarrow \muX, \tau \rightarrow eX,$ ν oscillations, meson decays, EDMs,
EDMs,
Pp $\rightarrow e_a\overline{e}_bX, h \rightarrow \tau\mu,$ $ep \rightarrow \tau X, \mu p \rightarrow \tau X$ Jet angular distribution in pp \rightarrow hjj, ...

Symmetry violation and new physics

• The SM accidental (B, $L_{e,\mu,\tau}$) and approximate (CP) symmetries are not necessarily preserved by new physics

- Generally, the strongest sensitivity comes from low-E, but if BSM scale is not too high collider observables can be competitive
- Vibrant low-E experimental program Talks by K. Kirch and T. Lasserre

- Merits of observables that violate B, L, $L_{e,\mu,\tau}$, CP:
 - Essentially 'background free' discovery tools

- Merits of observables that violate B, L, $L_{e,\mu,\tau}$, CP:
 - Essentially 'background free' discovery tools

	System	current limit	projected	SM (CKM)
Th0 —	→ e	$\sim 10^{-29}$	$\sim 5 \times 10^{-30}$	$\sim 10^{-38}$
	μ	$\sim 10^{-19}$		$\sim 10^{-35}$
	au	$\sim 10^{-16}$		$\sim 10^{-34}$
	n	$\sim 10^{-26}$	10^{-28}	$\sim 10^{-31}$
	p	$\sim 10^{-23}$	10^{-29}	$\sim 10^{-31}$
	¹⁹⁹ Hg	$\sim 6 \times 10^{-30}$	10^{-30}	$\sim 10^{-33}$
	¹²⁹ Xe	$\sim 10^{-27}$	10^{-29}	$\sim 10^{-33}$
	225 Ra	$\sim 10^{-23}$	10^{-26}	$\sim 10^{-33}$
		•••		

EDMs in $e \cdot cm$

For a recent review: Chupp, Fierlinger, Ramsey-Musolf, Singh, 1710.02504

* Observation would signal new physics or a tiny QCD θ-term (< 10⁻¹⁰). <u>Multiple measurements + theoretical input</u> can disentangle the two effects and point to underlying sources of CP violation

- Merits of observables that violate B, L, $L_{e,\mu,\tau}$, CP:
 - Essentially 'background free' discovery tools
 - Probe very high scales (conversely, strong constraints on TeV physics)

 $\Lambda \sim maximal$ scale probed by a given measurement, assuming O(I) couplings (for all probes) and one-loop factor for EDMs and LFV

- Merits of observables that violate B, L, $L_{e,\mu,\tau}$, CP:
 - Essentially 'background free' discovery tools
 - Probe very high scales (conversely, strong constraints on TeV physics)
 - Can shed light on open questions such as
 - the origin of neutrino mass (L, $L_{e,\mu,\tau}$ violation)
 - the generation of the baryon asymmetry in the universe:
 B (L) & CP violation required by Sakharov conditions

- Merits of observables that violate B, L, $L_{e,\mu,\tau}$, CP:
 - Essentially 'background free' discovery tools
 - Probe very high scales (conversely, strong constraints on TeV physics)
 - Can shed light on open questions such as
 - the origin of neutrino mass (L, $L_{e,\mu,\tau}$ violation)
 - the generation of the baryon asymmetry in the universe:
 B (L) & CP violation required by Sakharov conditions

Focus on this for the rest of the talk

Neutrino mass and symmetries

- Lorentz invariance \Rightarrow two options: Dirac or Majorana
- $SU(2)_W$ invariance \Rightarrow need new degrees of freedom

Dirac mass:

$$m_D \overline{\psi_L} \psi_R + \text{h.c.}$$

• Violates $L_{e,\mu,\tau}$, conserves L

Neutrino mass and symmetries

- Lorentz invariance \Rightarrow two options: Dirac or Majorana
- $SU(2)_W$ invariance \Rightarrow need new degrees of freedom

• Violates $L_{e,\mu,\tau}$, conserves L

Neutrino mass and symmetries

$$\mathcal{L}_{\nu \mathrm{SM}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\nu - \mathrm{mass}} + \dots$$

- Is Lepton Number a good symmetry of the new dynamics?
- Smallness of V mass and chiral nature of the weak interactions implies that *neutrino-less* processes are the best probes of $\Delta L=2$ interactions

Among neutrino-less processes $(K^+ \rightarrow \pi^-e^+, pp \rightarrow e^+e^+ + 2 \text{ jets }, ..., 0 \lor \beta\beta)$, $0 \lor \beta\beta$ is the strongest* probe — "Avogadro's number wins" (P. Vogel)

* For certain models, collider processes and meson decays can be competitive

Neutrinoless double beta decay

$$(N,Z) \rightarrow (N-2,Z+2) + e^{-} + e^{-}$$

$$T_{1/2} > \# \, 10^{25} \mathrm{yr}$$

Potentially observable in certain even-even nuclei (⁴⁸Ca, ⁷⁶Ge, ¹³⁶Xe, ...) for which single beta decay is energetically forbidden

Neutrinoless double beta decay

 $(N,Z) \rightarrow (N-2,Z+2) + e^{-} + e^{-}$

 $0v\beta\beta$

1.0

0.8

$$T_{1/2} > \#\,10^{25} {\rm yr}$$

1.0

Potentially observable in certain even-even nuclei (⁴⁸Ca, ⁷⁶Ge, ¹³⁶Xe, ...) for which single beta decay is energetically forbidden

n

Simplest mechanism: Majorana mass term

But not the only one...

See talk by T. Lasserre

• Ton-scale $0\nu\beta\beta$ searches (T_{1/2} > 10^{27-28} yr) will probe at unprecedented levels LNV from a broad range of mechanisms

 Connecting sources of LNV to nuclei: multi-scale problem

Chiral EFT

Best tackled by using EFT to bridge scales, combined with hadronic and nuclear matrix elements

LEFT

High-scale seesaw: discovery potential

• In this case $0\nu\beta\beta$ is a direct probe of ν Majorana mass: $\Gamma \propto |M_{0\nu}|^2 (m_{\beta\beta})^2$

High-scale seesaw: discovery potential

• In this case $0\nu\beta\beta$ is a direct probe of ν Majorana mass: $\Gamma \propto |M_{0\nu}|^2 (m_{\beta\beta})^2$

Assuming current range for matrix elements, discovery @ ton-scale *possible* for inverted spectrum or m_{lightest} > 50 meV

Diagnosing power

• High scale seesaw implies falsifiable correlation with other V mass probes. Future data can unravel new LNV sources or physics beyond " Λ CDM + m_v"

Diagnosing power

• High scale seesaw implies falsifiable correlation with other V mass probes. Future data can unravel new LNV sources or physics beyond " Λ CDM + m_v"

Diagnosing power

• High scale seesaw implies falsifiable correlation with other V mass probes. Future data can unravel new LNV sources or physics beyond " Λ CDM + m_v"

High-scale seesaw: theory developments

• Snapshot as of a few years ago [recall $\Gamma \propto |M_{0\nu}|^2 (m_{\beta\beta})^2$]

- Steps towards controlled uncertainties in matrix elements:
 - Use chiral EFT as guiding principle
 - Compute hadronic matrix elements with QCD-based methods
 - First-principles nuclear structure calculations: light nuclei, ⁴⁸Ca , ⁷⁶Ge, ...

New insights from EFT

VC, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729 VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck 1802.10097

• Transition operator to leading order in Q/Λ_{χ} (Q~k_F~m_{π}, Λ_{χ} ~GeV)

New insights from EFT

VC, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729 VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck 1802.10097

• Transition operator to leading order in Q/Λ_{χ} (Q~k_F~m_{π}, Λ_{χ} ~GeV)

 $C \sim 4\pi/(m_N Q)$

Strong ¹S₀ shortrange interaction

Connection with data?

• Chiral+isospin symmetry relates g_v to I=2 e.m. couplings (hard γ 's & ν 's)

- NN data $(a_{nn}+a_{pp}-2a_{np})$ determine C_1+C_2 , confirming LO scaling!
- Assuming $g_{\nu} \sim (C_1 + C_2)/2$, what is the impact on $m_{\beta\beta}$ extraction?

Impact on nuclear matrix elements (1)

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, <u>S. Pastore,</u> <u>M. Piarulli</u>, U. van Kolck, <u>R. Wiringa</u>, 1907.11254

Transitions of experimental interest (⁷⁶Ge \rightarrow ⁷⁶Se, ...) have node ($\Delta I=2$) \Rightarrow expect significant effect!

Impact on nuclear matrix elements (2)

• Similar large effects for nuclei of experimental interests are found with other methods as well (QRPA, nuclear shell model), taking $g_v \sim (C_1 + C_2)/2$

Jokiniemi-Soriano-Menendez, 2107.13354

Impact on nuclear matrix elements (2)

• Similar large effects for nuclei of experimental interests are found with other methods as well (QRPA, nuclear shell model), taking $g_v \sim (C_1 + C_2)/2$

	pnQRPA			NSM		
Nucleus	$M_{ m L}^{0 u}$	$M_{ m S}^{0 u}$	$M_{\rm S}^{0 u}/M_{\rm L}^{0 u}(\%)$	$M_{ m L}^{0 u}$	$M_{ m S}^{0 u}$	$M_{\rm S}^{0 u}/M_{\rm L}^{0 u}(\%)$
⁴⁸ Ca				0.96 - 1.05	0.22 - 0.65	23 - 62
$^{76}\mathrm{Ge}$	4.72 - 5.22	1.49 - 3.80	32 - 73	3.34 - 3.54	0.52 - 1.49	15 - 42
82 Se	4.20 - 4.61	1.27 - 3.24	30 - 70	3.20 - 3.38	0.48 - 1.38	15 - 41
$^{96}{ m Zr}$	4.22 - 4.63	1.24 - 3.19	29 - 69			
¹⁰⁰ Mo	3.40 - 3.95	1.66 - 4.26	49 - 108			
^{116}Cd	4.26 - 4.45	1.10 - 2.80	26 - 63			
124 Sn	4.72 - 5.29	1.69 - 4.28	36 - 81	3.20 - 3.41	0.54 - 1.58	17 - 46
^{128}Te	3.92 - 4.50	1.37 - 3.45	35 - 77	3.56 - 3.80	0.61 - 1.76	17 - 46
$^{130}\mathrm{Te}$	3.46 - 3.89	1.18 - 3.05	34 - 77	3.26 - 3.48	0.57 - 1.64	17 - 47
¹³⁶ Xe	2.53 - 2.80	0.76 - 1.95	30 - 70	2.62 - 2.79	0.45 - 1.31	17 - 47
	$r({ m fm})$			$r({ m fm})$		

Jokiniemi-Soriano-Menendez, 2107.13354

Impact on nuclear matrix elements (2)

• Similar large effects for nuclei of experimental interests are found with other methods as well (QRPA, nuclear shell model), taking $g_v \sim (C_1 + C_2)/2$

Jokiniemi-Soriano-Menendez, 2107.13354

Towards determining of g_{ν}

• Large-N_C arguments point to $g_v \sim (C_1 + C_2)/2 + O(1/N_C)$

Richardson, Shindler, Pastore, Springer, 2102.02814

- Lattice QCD
 - $\pi^- \rightarrow \pi^+ e^- e^-$ precisely known
 - Formalism for NN developed

Tuo et al. 1909.13525; Detmold, Murphy 2004.07404

Davoudi, Kadam, 2012.02083

• Analytic approach inspired by Cottingham formula for $\delta m_{p,n}$ (EM)

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

Estimating the contact term (1)

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

• Useful representation of the amplitude

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\alpha\beta}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp|T\{j_{\rm w}^{\alpha}(x)j_{\rm w}^{\beta}(0)\}|nn\rangle$$

Forward "Compton" amplitude

Estimating the contact term (1)

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

• Useful representation of the amplitude

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\alpha\beta}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp|T\{j_{\rm w}^{\alpha}(x)j_{\rm w}^{\beta}(0)\}|nn\rangle$$

Estimating the contact term (1)

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

• Useful representation of the amplitude

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\alpha\beta}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp|T\{j_{\rm w}^{\alpha}(x)j_{\rm w}^{\beta}(0)\}|nn\rangle$$

Estimating the contact term (2)

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

- Determine $C_{1,2}$ with ~ 30% uncertainty (dominated by intermediate k)
- Validation: $C_1 + C_2 \Rightarrow (a_{nn} + a_{pp})/2 a_{np} = 15.5(4.5)$ fm versus 10.4(2) fm (exp)
- Provided 'synthetic data' for the nn \rightarrow pp amplitude to be used to fit g_{v} with regulators suitable for many-body nuclear calculations

 $|\mathbf{p}| = 25 \,\mathrm{MeV} \qquad |\mathbf{p}'| = 30 \,\mathrm{MeV}$

$$\mathcal{A}_{\nu}(|\mathbf{p}|, |\mathbf{p}'|)e^{-i(\delta_{1_{S_0}}(|\mathbf{p}|)+\delta_{1_{S_0}}(|\mathbf{p}'|))} = -0.0195(5)\,\mathrm{MeV}^{-2}$$

• First calculation of ${}^{48}Ca \rightarrow {}^{48}Ti$ with contact fitted to synthetic data \Rightarrow contact term enhances nuclear matrix element by $(43\pm7)\%$ Wirth, Yao, Hergert, 2105.05415

What about higher orders?

- N2LO
 - πN loops + new contact

VC, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

• 2-body **x** 1-body current

Wang-Engel-Yao 1805.10276

Calculations in light and heavy nuclei show O(10%) corrections

S. Pastore, J. Carlson, V.C., W. Dekens, E. Mereghetti, R. Wiringa 1710.05026 V.C., J. Engel, j. Menendez, E. Mereghetti, in preparation

What about higher orders?

- N2LO
 - πN loops + new contact

VC, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

• 2-body **x** 1-body current

Chiral EFT + estimate of contact term + many-body → Significant step towards reduction of matrix element uncertainty & interpretation of a positive or null result in terms of m_{ββ}

• Induce contributions to $0\nu\beta\beta$ not directly related to the exchange of light neutrinos, within reach of current experiments

• Induce contributions to $0\nu\beta\beta$ not directly related to the exchange of light neutrinos, within reach of current experiments

Tello-Nemevesek-Nesti-Senjanovic-Vissani 1011.3522 Ge-Lindner-Patra 1508.07286. **

...

• Induce contributions to $0\nu\beta\beta$ not directly related to the exchange of light neutrinos, within reach of current experiments

New contributions can add incoherently or interfere with $m_{\beta\beta}$, significantly affecting the interpretation of experimental results

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1708.09390

- Induce contributions to $0\nu\beta\beta$ not directly related to the exchange of light neutrinos, within reach of current experiments
- May lead to correlated (or precursor!) signal at LHC: pp →ee jj

- Induce contributions to $0\nu\beta\beta$ not directly related to the exchange of light neutrinos, within reach of current experiments
- May lead to correlated (or precursor!) signal at LHC: $pp \rightarrow ee jj$

- Induce contributions to $0\nu\beta\beta$ not directly related to the exchange of light neutrinos, within reach of current experiments
- May lead to correlated (or precursor!) signal at LHC: $pp \rightarrow ee jj$

 Chiral EFT: several unknown leading-order NN contact interactions. Needed to probe physics beyond high-scale seesaw and assess the complementarity to collider searches. Opportunity for lattice QCD

V.C, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti [1806.02780]

Connection to Leptogenesis

• LNV contributes to both generating and destroying a lepton asymmetry \Rightarrow LNV processes can be used to falsify leptogenesis

Deppisch-Harz-Hirsch 1312.4447, Deppisch-Harz-Hirsch-Huang-Pas 1503.04825, Deppisch-Graf-Harz-Huang 1711.10432, ...

An explicit example

Harz, Ramsey-Musolf, Shen, Urrutia-Quiroga, 2106.10838

Observation of LNV possible only in region where leptogenesis is not viable

$0\nu\beta\beta$ outlook

- Ton-scale $0\nu\beta\beta$ searches have great discovery potential we simply don't know the origin of m_{ν} and the scale Λ associated with LNV
- Model diagnosing: what is the underlying source of LNV?
 - Within $0\nu\beta\beta$: rate variation with isotope; single electron spectra and electron's angle distribution
 - $0\nu\beta\beta$ + other probes: oscillations, direct m_{ν} measurements, cosmology, meson & lepton decays, LNV @ colliders, LFV, ...
- Good prospects to control theoretical uncertainties thanks to synergy of EFT, lattice QCD, and nuclear structure

Concluding comments

- Vibrant experimental program exploring violation of Standard Model accidental symmetries (B,L, L_{e,µ,τ}) and nearsymmetries (CP)
- Probe very high scales
- Can shed light on open questions (baryon asymmetry, neutrino mass, unification, ...)

Looking forward to exciting experimental results!

