

Selected Physics Highlights at LHCb

Nigel Watson / Univ. Birmingham on behalf of the LHCb Collaboration

The 22nd Particles and Nuclei International Conference

5 Sep. – 10 Sep., 2021 Lisbon / online

ITE AD BRI ALS

Outline

- Why flavour?
- New physics may hide as virtual particles in loops
- Indirect probe accesses higher energy scale than direct searches

m_t [GeV]

- Convenient detection mechanism
- Identifying origin needs models
- Very selected LHCb highlights
 - Intrinsic charm in proton
 - W boson mass
 - Exotic hadrons
 - Lepton flavour universality
- See also
 - <u>CKM/CP (Tommaso Pajero);</u>
 - <u>Rare decays (Zhenzi Wang)</u>
 - <u>QCD (Davide Zuliani);</u>
 - ALP searches (Adrian Casais Vidal)

- General-purpose detector in the forward region: $\sim 0.6^{\circ} 16^{\circ}$
- Excellent vertex resolution: Si detectors (VELO)
- Particle Identification: RICH detectors; calorimeters; muon systems
- Stress testing the Standard Model
 - Precise measurements
 - Direct/indirect searches for physics beyond SM in decays of b, c hadrons and τ decays

- General-purpose detector in the forward region: $\sim 0.6^{\circ} 16^{\circ}$
- Excellent vertex resolution: Si detectors (VELO)
- Particle Identification: RICH detectors; calorimeters; muon systems
- Stress testing the Standard Model
 - Precise measurements
 - Direct/indirect searches for physics beyond SM in decays of b, c hadrons and τ decays

Why: Intrinsic charm of proton?

Q: Does p wavefunction contain charm quarks |uudcc̄)? or is charm content from g → cc̄ splitting?

- Impacts
 - Non-perturbative dynamics inside nucleon
 - Affects *c* hadron rates, kinematics in cosmic-ray proton interactions
 - → semileptonic decays, important background source in astrophysical neutrinos
 - Many predicted cross-sections at accelerators, eg. Higgs production also affected
- Recent measurements of Intrinsic Charm inconclusive

Intrinsic charm in protons

- Fraction of Z+jets that have charm, measured as ratio of cross-sections
 - Sigma(Z+c-jet)/sigma(Z+all-jet)

- Leading Order; in forward region one parton has large x, so LHCb probes valence region
- Central region less sensitive to intrinsic charm

 $\stackrel{4}{N_{
m trk}(
m DV)}$

Selecting charm jets

• Identify $Z \rightarrow \mu \mu$

 Select c-jets using mass, particle multiplicity of displaced vertex

Other jets

Charm Displaced Vertex

3

0

2

 $N_{\rm trk}({\rm DV})$

Selecting charm jets

• Identify $Z \rightarrow \mu \mu$

 Select c-jets using mass, particle multiplicity of displaced vertex

Other jets

Charm Charm Displaced Vertex

 $m_{\rm cor}({\rm DV}) \equiv {\rm Min. mass} \sim {\rm flight \, distance}$

$$\sqrt{m(\mathrm{DV})^2 + [\mathbf{p}(\mathrm{DV})\sin^2{\theta}]^2} + \mathbf{p}(\mathrm{DV})\sin^2{\theta}$$

Selecting charm jets

• Identify $Z \rightarrow \mu \mu$

 Select c-jets using mass, particle multiplicity of displaced vertex

Other jets

Charm Charm

 $m_{\rm cor}({\rm DV}) \equiv {\rm Min. mass} \sim {\rm flight distance}$

 $\sqrt{m(\mathrm{DV})^2 + [\mathbf{p}(\mathrm{DV})\sin\mathbf{\theta}]^2} + \mathbf{p}(\mathrm{DV})\sin\mathbf{\theta}$

2D fit: (*m_{cor}* , *N_{trk}*), high-purity calibration sample templates *separates c-jets*

Estimating charm-tagging efficiency

"Tag&probe" to estimate efficiency

[LHCB-PAPER-2021-029]

Source	Relative Uncertainty
c tagging	6–7%
DV-fit templates	3–4%
Jet reconstruction	1%
Jet $p_{\rm T}$ scale & resolution	1%
Total	8%

- Efficiency ~24% and independent of p_T
- Dominant systematic uncertainty

Direct probe of intrinsic charm

"Allowing IC": large forward-region uncertainty low sensitivity of previous expts. to large-x charm PDF

- ~20% consistency with no-IC and IC hypotheses, more central y(Z)
- Enchancement in forward region compared to no-IC scenario
 - Where largest IC effects expected
 - Consistent with contribution from IC
- Global PDF analysis to make firm conclusions (+Run-3 data to come)

Why: W boson mass?

LHCb

[arXiv:2109.01113]

W boson mass

- Novel, proof-of-principle measurement, ~1/3 Run2 data, $W \rightarrow \mu \nu_{\mu}$
- Measured p_T of μ , peaks ~ $m_W/2$
- Spectrum depends on actual m_W
- Contamination from $Z \rightarrow \mu^+ \mu^-$
 - Measure simultaneously to control

$$\phi^* = \frac{\tan((\pi - \Delta \phi)/2)}{\cosh(\Delta \eta/2)} \sim \frac{p_{\mathrm{T}}^Z}{M}$$

 Requires complete understanding of lepton momentum measurement and modelling

W boson mass

W boson mass

- First LHCb $m_W = 80354 \pm 23_{
 m stat} \pm 10_{
 m exp} \pm 17_{
 m theory} \pm 9_{
 m PDF} \,\, {
 m MeV}$
 - Consistent with previous measurements
- Total uncertainty $\sim 20~\text{MeV}$ plausible with existing data
- Potential combination other LHC experiments, exploit complementary η coverage

Why: "Exotic" hadrons?

- Combinations other than $q\bar{q}$, qqq considered since 1960's
- Revitalised interest, many recent(ish) observations, Belle, CDF, D0, BESIII, " LHCb – tetraquarks, pentaquarks
 - Scales a challenge for QCD
 - Measurements driving progress

Volume 8, number 3

PHYSICS LETTERS

1 February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the represen-

Why: "Exotic" hadrons?

- Combinations other than $q\bar{q}$, qqq considered since 1960's
- Revitalised interest, many recent(ish) observations, Belle, CDF, D0, BESIII, " LHCb – tetraquarks, pentaquarks
 - Scales a challenge for QCD
 - Measurements driving progress

Volume 8, number 3

PHYSICS LETTERS

1 February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the represen-

Why: "Exotic" hadrons?

Tetraquark T_{cc}^+ search

- Heavy quark symmetry
 - Predicts existence of $cc\bar{q}\bar{q}$ and $bb\bar{q}\bar{q}$ tetraquark, long-lived w.r.t. strong interaction
 - Predicted
 - existence T_{cc}^+ , two c quarks
 - ground state $J^P = 1^+$
 - Mass $\sim D^*D^0$ threshold

- Search strategy
 - Narrow exotic state, same-sign double-charmed mass spectrum
- Mass is ~ $D^{*+}D^0$ and $D^{*0}D^+$ thresholds
- Select $D^0 D^0 \pi^+$ ($D^0 \rightarrow K^- \pi^+$)

- Unbinned fit to 2-D D^0 mass combinations of $D^0 D^0 \pi^+$ candidates
- Subtract combinatorial $K^-\pi^+$ contribution

[arXiv:2109.01038] [arXiv:2109.01056]

Tetraquark T_{cc}^+ search

[arXiv:2109.01038] [arXiv:2109.01056]

- Very narrow state in $D^0 D^0 \pi^+$
 - Consistent with $cc\bar{u}\bar{d}$ tetraquark
- Nature of T_{cc}^+ candidate
 - P-wave RBW fit (δm relative to $D^{*+}D^0$ threshold)

$$\begin{split} \delta m_{\rm BW} &= -273 \pm 61 \pm 5 \,_{-14}^{+11} \, \text{keV}/c^2 \,, \\ \Gamma_{\rm BW} &= 410 \pm 165 \pm 43 \,_{-38}^{+18} \, \text{keV} \,, \end{split}$$

- Signal significance >10 σ
- Just below $D^{*+}D^0$ threshold
- Most precisely measured 'exotic' mass w.r.t. corresponding threshold
- Adds support for a $bb\bar{u}\bar{d}$ tetraquark, stable to strong and EM decays

Why: Lepton Flavour Universality?

- One aspect of wide range of rare decay studies, $\mathcal{B} \sim 10^{-6} 10^{-10}$
 - More details in Rare decays (Zhenzi Wang)
- LHCb ideal high rate, excellent particle ID, low pile-up exclusive candidates
- Standard Model behavior of e, μ , τ leptons is <u>universal</u>
- Differences due to mass alone
- Fundamental principle, conceptually simple tests
 - Branching fractions
 - Angular distributions
- Set of related measurements, possible hints of ...?
- Rare decays \rightarrow results (still) limited by sample size

- SM needs loop / box diagrams, electroweak 'penguins'
 No Flavour-Changing Neutral Current at tree level
- New physics particles, also possible in loops, affect
 - Branching fractions
 - Angular observables (× many, 4-particle final states)
 - Asymmetries
- Candidate signatures
 - Clean
 - Low backgrounds (resolution, particle ID)
- Predictions well-established
 - Varying degrees of theoretical uncertainty
 - Hadronic form factors (non-pert. QCD)

- tree $b \rightarrow ccs$ $J/\psi(1S)$ photon pole $\psi(2S)$ Long distance dΓ contributions from cc above $\overline{dq^2}$ open charm interference
- Multiple, very different scales
 - Λ_{QCD}
 - b quark mass
 - W,t masses
 - $\Lambda_{New \ Physics}$??
- Interplay of operators, couplings in EFT vary with $q^2 = m^2(\ell^+\ell^-)$
- Analyses made as $f(q^2)$
 - Exclude large resonances, use a control/normalisation

tree $b \rightarrow ccs$

- $J/\psi(1S)$ photon pole $\psi(2S)$ Long distance dΓ contributions from cc above $\overline{dq^2}$ open charm interference
- Multiple, very different scales
 - Λ_{QCD}
 - b quark mass
 - W,t masses
 - $\Lambda_{New \ Physics}$??
- Interplay of operators, couplings in EFT vary with $q^2 = m^2(\ell^+\ell^-)$
- Analyses made as $f(q^2)$
 - Exclude large resonances, use a control/normalisation

- tree $b \rightarrow ccs$ $J/\psi(1S)$ photon pole $\psi(2S)$ Long distance dΓ contributions from cc above $\overline{dq^2}$ open charm interference $\mathcal{C}_{9}^{(\prime)}, \mathcal{C}_{10}^{(\prime)}$
- Multiple, very different scales
 - Λ_{QCD}
 - b quark mass
 - W,t masses
 - $\Lambda_{New \ Physics}$??
- Interplay of operators, couplings in EFT vary with $q^2 = m^2(\ell^+\ell^-)$
- Analyses made as $f(q^2)$
 - Exclude large resonances, use a control/normalisation

- $\phi \rightarrow K^+K^-$, ±12 MeV window
- Multivariate selection: kinematic, topological and particle ID variables
 - Signal proxy: $B_s^0 \to J/\psi(\to \mu^+\mu^-)\phi$; background proxy: signal upper mass sideband
 - Extended maximum liklihood fit
 - Signal: double Gaussian function +power-law tails, parameters from proxy decays
 - Background: exponential
- Specific kinematic/PID criteria to suppress exclusive backgrounds

$B_s^0 \rightarrow \phi(\rightarrow K^+K^-)\mu^+\mu^-$ branching fraction [arXiv:2105.14007] Normalisation q^2 [GeV²/ c^4] 18 10^{4} $B_s^0 \to J/\psi(\to \mu^+\mu^-)\phi$ 16 LHCb ≥²⁵⁰⁰⁰ 10^{3} $9\,\mathrm{fb}^{-1}$ Ž₂₀₀₀₀ 10-∓- data 10^{2} 15000 — total $--B_s^0 \rightarrow J/\psi \phi$ andidates 10000 ····· combinatorial 10 5000 HC 0 1 5300 5400 5500 5600 5700 5200 5400 5600 5800 $m(K^+K^-\mu^+\mu^-)$ [MeV/*c*²] $m(K^+K^-\mu^+\mu^-)$ [MeV/*c*²] [arXiv:2105.14007]

- $\phi \rightarrow K^+K^-$, ±12 MeV window
- Multivariate selection: kinematic, topological and particle ID variables
 - Signal proxy: $B_s^0 \to J/\psi(\to \mu^+\mu^-)\phi$; background proxy: signal upper mass sideband
 - Extended maximum liklihood fit
 - Signal: double Gaussian function +power-law tails, parameters from proxy decays
 - Background: exponential
- Specific kinematic/PID criteria to suppress exclusive backgrounds

- $\phi \rightarrow K^+K^-$, ±12 MeV window
- Multivariate selection: kinematic, topological and particle ID variables
 - Signal proxy: $B_s^0 \to J/\psi(\to \mu^+\mu^-)\phi$; background proxy: signal upper mass sideband
 - Extended maximum liklihood fit
 - Signal: double Gaussian function +power-law tails, parameters from proxy decays
 - Background: exponential
- Specific kinematic/PID criteria to suppress exclusive backgrounds

$B_s^0 \rightarrow \phi(\rightarrow K^+K^-)\mu^+\mu^-$ branching fraction

• Measure \mathcal{B} in narrow q² bins, relative to normalisation mode

- Relative efficiencies from simulation (per q^2 , run-period)

$$\frac{\mathrm{d}\mathcal{B}(B^0_s \to \phi\mu^+\mu^-)}{\mathrm{d}q^2} = \frac{\mathcal{B}(B^0_s \to J/\psi\phi) \times \mathcal{B}(J/\psi \to \mu^+\mu^-)}{q^2_{\mathrm{max}} - q^2_{\mathrm{min}}} \times \frac{N_{\phi\mu^+\mu^-}}{N_{J/\psi\phi}} \times \frac{\epsilon_{J/\psi\phi}}{\epsilon_{\phi\mu^+\mu^-}}$$

• Most precise measurement this \mathcal{B} to date (full q^2)

 $\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-) = (8.14 \pm 0.21 \pm 0.16 \pm 0.03 \pm 0.39) \times 10^{-7}$

 $m(K^+K^-\mu^+\mu^-)$ [MeV/c²]

$B_s^0 \rightarrow \phi(\rightarrow K^+K^-)\mu^+\mu^-$ branching fraction

- $\ln q^2$ [1.1, 6.0] GeV²/ c^4
 - Measured $d\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)/dq^2 = (2.88 \pm 0.22) \times 10^{-8} \,\text{GeV}^{-2}c^4$ - SM prediction (LQCD+LCSR) $(5.37 \pm 0.66) \times 10^{-8} \,\text{GeV}^{-2}c^4$
- Consistency ~ 3.6σ level

 ℓ^+

Lepton universality

• Consistency with SM in \mathcal{B} and angular measurements subject to change, e.g. $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

- Ratios of ${\mathcal B}$ very robust, both measurement and predictions

$$- H = K, K^*, \phi, \dots$$
- (not Higgs)
$$R_H \equiv \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to H\mu^+\mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to He^+e^-)}{\mathrm{d}q^2} \mathrm{d}q^2} \neq 1 \text{ (New Physics?)}$$

- "Direct" LFU tests: R_K , R_{K^*} , $R_{-}\phi$, etc., various H
- Many cancellations
- One of various golden measurments, LHCb uses double ratio

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to \mu^{+} \mu^{-}) K^{+})} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to e^{+} e^{-}) K^{+})}$$

- relative to resonant mode, even more cancellation, e.g. efficiencies $r_{J/\psi} = \mathcal{B}(B^+ \to J/\psi (\to \mu^+ \mu^-) K^+) / \mathcal{B}(B^+ \to J/\psi (\to e^+ e^-) K^+)$

- Detector efficiencies from simulation, calibrated to data
- Usual, q^2 regions
 - $1.1 6.0 \text{ GeV}^2/c^4$ rare signal
 - $\sim J/\psi(1S)$ control
 - $\psi(2S)$ cross-checks
- e^- , μ^- mass effects important in detector
 - e^- large bremsstrahlung up-/down-stream of magnet
- Very different
 - Mass, momentum resolutions
 - Trigger efficiencies
- γ emitted downstream
 - γ same calorimeter cell as e^- , \vec{p} OK
- γ emitted upstream
 - γ different cell to e^-
 - \vec{p} measured after recovering γ 's

Detector efficiencies from simulation, calibrated to data

Lepton flavour universality: rare, control, e, μ

Lepton flavour universality: rare, control, e, μ

Lepton flavour universality: many cross-checks

Control mode ratio stable with parent p_T $\begin{bmatrix} arXiv:2103.11769 \\ I.05 \\ I.000 \\ I.000 \\ I.000 \\ I.5000 \\ P_T(B^+) [MeV/c] \end{bmatrix}$

 Studied vs. many other variables, also no significant trend

Lepton flavour universality: many cross-checks

All LHCb Run1 + Run2 data

[arXiv:2103.11769]

- Factor \sim 2 increase in reconstructed candidates since previous paper

$$r_{J/\psi} = \mathcal{B}(B^+ \to J/\psi \,(\to \mu^+ \mu^-) K^+) / \mathcal{B}(B^+ \to J/\psi \,(\to e^+ e^-) K^+) = 0.981 \pm 0.020$$

 Strict (essential) cross-check, validates relative efficiencies and all corrections for high yield control modes

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to \psi(2S)(\to \mu^+ \mu^-)K^+)}{\mathcal{B}(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)} / \frac{\mathcal{B}(B^+ \to \psi(2S)(\to e^+ e^-)K^+)}{\mathcal{B}(B^+ \to J/\psi(\to e^+ e^-)K^+)} = 0.997 \pm 0.011$$

- Validation of whole double ratio procedure
- Also a world-leading test in itself of lepton flavour universality

[arXiv:2103.11769]

$$R_K(1.1 < q^2 < 6.0 \,\text{GeV}^2/c^4) = 0.846 \,{}^{+0.042}_{-0.039} \,{}^{+0.013}_{-0.012}$$

- Latest LHCb measurement
 - Most precise to date
 - Consistency with SM is 3.1 σ : "hints" \rightarrow "evidence" \rightarrow ??
 - Other LFU measurements in progress (R_{K^*} ,...)
 - Remember statistics limited (for some time to come)

LHCb Nigel Watson (Birmingham)

Conclusions

- LHC provides the enabling b production rates
- LHCb are exploiting these to stress-test the SM and relatives
- First observation of very narrow, double charm tetraquark
- More support for intrinsic charm in proton
- First m_W measurement in forward region
- Lepton Universality Violation more hints, evidence, …

