New theoretical aspects of flavor physics

Gino Isidori [University of Zürich]

- Introduction
- The anomalies
- Effective Field Theory considerations
- From EFT to simplified models
- Speculations on ultraviolet completions
- Conclusions

Introduction

Despite all its phenomenological successes, the SM has some deep unsolved problems (*hierarchy problem*, *flavor problem*, *neutrino masses, dark-matter, dark energy, inflation...*)

The Standard Model should be regarded as an *Effective Field Theory* (*EFT*), i.e. the limit (*in the range of energies and effective couplings so far probed*) of a more fundamental theory with new degrees of freedom

PANIC 2021

UV Theory

Introduction

The most interesting hints toward UV dynamics come from possible *un-natural features* of the EFT.

UV imprint

quantitative UV imprint

The violations of Lepton Flavor Universality recently reported by experiments belong to this category

Introduction

As I will argue in the rest of this talk, the <u>violations of LFU</u> suggest to "attack" these two problems together, and not one at a time (*as often done in the past*)

<u> The anomalies</u>

Since 2013 results in semi-leptonic B decays started to exhibit tensions with the SM predictions connected to a possible violation of Lepton Flavor Universality

More precisely, we seem to observe a <u>different behavior</u> (*beside pure* kinematical effects) of different lepton species in the following processes:

- $b \rightarrow s l^+l^-$ (neutral currents): u vs. e
- b \rightarrow c *lv* (charged currents): τ vs. light leptons (μ , e)

<u><u>The anomalies</u></u>

Since 2013 results in semi-leptonic B decays started to exhibit tensions with the SM predictions connected to a possible violation of Lepton Flavor Universality

More precisely, we seem to observe a <u>different behavior (beside pure</u> kinematical effects) of different lepton species in the following processes:

- $b \rightarrow s l^+l^-$ (neutral currents): μ vs. e
- b \rightarrow c *lv* (charged currents): τ vs. light leptons (μ , e)

N.B: LFU is an <u>accidental symmetry</u> of the SM Lagrangian in the limit where we neglect the lepton Yukawa couplings.

LFU is <u>badly broken</u> in the Yukawa sector: $y_e \sim 3 \times 10^{-6}$, $y_{\mu} \sim 3 \times 10^{-4}$, $y_{\tau} \sim 10^{-2}$

but all the lepton Yukawa couplings are small compared to SM gauge couplings, giving rise to the (*approximate*) universality of decay amplitudes which differ only by the different lepton species involved

PANIC 2021

• b \rightarrow s l^+l^- (neutral currents): μ vs. e

<u>High significance</u>: several observables pointing to the same coherent picture [3 new results in 2021]

<u><u>The anomalies</u></u>

Conservative fit using "clean obs." only

4.6 σ significance of NP hypothesis $\Delta C_9^{\mu} = -\Delta C_{10}^{\mu}$ vs. SM Clean short-distance effect $[\Delta C_i^{\mu} = C_i^{\mu} - C_i^{e}]:$

$$\mathcal{O}_{10}^{\ell} = (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell)$$
$$\mathcal{O}_9^{\ell} = (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell)$$

<u>The anomalies</u>

• b \rightarrow s l^+l^- (neutral currents): μ vs. e

<u>High significance</u>: several observables pointing to the same coherent picture [3 new results in 2021]

• b \rightarrow c *lv* (charged currents): τ vs. light leptons (μ , e)

$$b$$

 c
 v

$$R(X) = \frac{\Gamma(B \to X \tau \nu)}{\Gamma(B \to X l \nu)}$$
$$X = D \text{ or } D^*$$

- Clean SM predictions (*uncertainties cancel in the ratios*)
- Smaller significance and slower progress
- Consistent results by 3 different exp. $\rightarrow 3.1\sigma$ excess over SM

EFT considerations

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- We definitely need non-vanishing <u>left-handed</u> current-current operators although other contributions are also possible

Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

- Large coupling [*competing with SM tree-level*] in $bc \rightarrow l_3 v_3$ [R_D, R_{D*}]
- Small coupling [competing with SM loop-level] in bs $\rightarrow l_2 l_2$ [R_K, R_{K*}, ...]

G. Isidori – New theorertical aspects of flavor physics

PANIC 2021

EFT considerations

Data point to (short-distance) NP effects in operators of the type

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$

PANIC 2021

EFT considerations

Data point to (short-distance) NP effects in operators of the type

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$

• O(10⁻¹) suppress. for each 2^{nd} gen. l_L

EFT considerations

Data point to (short-distance) NP effects in operators of the type

• O(10⁻¹) suppress. for each 2^{nd} gen. q_L or l_L

charged-currents:

 $\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{\ell}_L^\beta \gamma_\mu q_L^j)$

EFT considerations

Data point to (short-distance) NP effects in operators of the type

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$

✓ O(10⁻¹) suppress. for each 2nd gen. q_L or l_L [recall |V_{ts}| ~ 0.4×10⁻¹]

PANIC 2021

From EFT to simplified models [the flavor structure]

Multi-scale picture @ origin of flavor:

Barbieri '21 Allwicher, GI, Thomsen '20 Bordone et al. '17 Panico & Pomarol '16 Dvali & Shifman '00

Main idea:

- Flavor non-universal interactions already at the TeV scale:
- 1st & 2nd gen. have small masses because they are coupled to NP at heavier scales

From EFT to simplified models [the flavor structure]

Multi-scale picture @ origin of flavor:

Which mediators can generate the effective operators required for by the EFT fit? If we restrict the attention to tree-level mediators, not many possibilities...

LQ (both scalar and vectors) have two general <u>strong advantages</u> with respect to the other mediators:

II. Direct 3^{rd} gen. LQ are also in better shape as far as direct searchessearches:are concerned (*contrary to Z'...*).

	Model	<i>R</i> _{<i>K</i>^(*)}	R _{D(*)}	$R_{K^{(*)}} \& R_{D^{(*)}}$
Scalars	$S_1 = (3, 1)_{-1/3}$	×	~	×
	$R_2 = (3, 2)_{7/6}$	×	\checkmark	×
	$\widetilde{R}_2 = (3, 2)_{1/6}$	×	×	×
	$S_3 = (3, 3)_{-1/3}$	\checkmark	×	×
Vector	$U_1 = (3, 1)_{2/3}$	\checkmark	\checkmark	\checkmark
	∽ <i>U</i> ₃ = (3 , 3) _{2/3}	\checkmark	×	×

Which LQ explains which anomaly?

Angelescu, Becirevic, DAF, Sumensari [1808.08179]

Barbieri, GI, Pattori, Senia '15

- mediator: U_1
- → <u>flavor structure</u>: U(2)ⁿ

approx. flavor symmetry ensuring a CKM-like mixing $3^{rd} \rightarrow 1^{st}$, 2^{nd} gen. LQ of the Pati-Salam gauge group: $SU(4) \times SU(2)_L \times SU(2)_R$

Considering the U_1 only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_{\mu} \mathcal{E}_L^{\alpha}) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_{\mu} e_R^{\alpha}) \right] + \mathrm{h.c.}$$

and fitting <u>all low-energy data</u> leads to an excellent description of present data which is fully <u>consistent with high-pT searches</u> [*within the reach of HL-LHC*]...

... plus interesting implications for future low-energy searches [*LFV in \tau and <i>B decays*, $B \rightarrow K\tau\tau$, ...]

 $[\]rightarrow$ More in the talk by C. Cornella

First observation: the Pati & Salam group, proposed in the 70's to unify quarks & leptons predicts the <u>only massive LQ</u> that is a good mediator for <u>both</u> anomalies:

Heeck, Teresi, '18

Pati-Salam group: $SU(4) \times SU(2)_L \times SU(2)_R$

Main Pati-Salam idea: Lepton number as "the 4th color"

The massive LQ $[U_1]$ arise from the breaking SU(4) \rightarrow SU(3)_C×U(1)_{B-L}

The problem of the "original PS model" are the strong bounds on the LQ couplings to $1^{st} \& 2^{nd}$ generations [e.g. M > 200 TeV from $K_L \rightarrow \mu e$]

Attempts to solve this problem simply adding
extra fermions or scalarsCalibbi, Crivellin, Li, '17;
Fornal, Gadam, Grinstein, '18

Second observation: we can "protect" the light families charging under SU(4) only the 3rd gen. or, more generally, "separating" the universal SU(3) component

Second observation: we can "protect" the light families charging under SU(4) only the 3rd gen. or, more generally, "separating" the universal SU(3) component

Fuentes-Martin et al. '20 + work in prog.

PANIC 2021

Speculations on UV completions

An ambitious attempt to construct a *full theory of flavor* has been obtained embedding the Pati-Salam gauge group into an extra-dimensional construction:

In most *PS-extended models* collider and low-energy pheno are controlled by the effective 4321 gauge group that rules TeV-scale dynamics Di Lu

Despite the apparent complexity, the construction is highly constrained

consistent

with

present

data !

- Positive features the EFT reproduced
- Calculability of $\Delta F=2$ processes
- Precise predictions for high-pT data

New striking collider signature: G' ("*coloron*" = *heavy color octet*)

 \rightarrow strongest constraint on the scale of the model from pp $\rightarrow t \bar{t}$

Conclusions

- The statistical significance of the LFU anomalies is growing: in the $b \rightarrow sll$ system the chance this is a pure statistical fluctuation is marginal...
- <u>If combined</u>, the two sets of anomalies point to non-trivial flavor dynamics around the TeV scale, involving mainly the 3^{rd} family \rightarrow connection to the origin of flavor [multi-scale picture at the origin of flavor hierarchies]
- <u>No contradiction</u> with existing low- & high-energy data, <u>but new non-</u><u>standard effects should emerge soon</u> in both these areas

Very interesting (near-by!) future...

(both on the exp., the pheno, and the model-building point of view) G. Isidori – New theorertical aspects of flavor physics

Leptoquarks suffered of an (*undeserved*) "bad reputation" for two main reasons:

Could mediate proton decay → not a general feature of the LQ: it depends on the model...!
[e.g. not the case in the Pati-Salam model]

• Severe bounds from processes involving μ & e (such as $K_L \rightarrow \mu e$) \rightarrow avoided with non-trivial flavor structure [*e.g. non-univ. interactions*]

On the other hand, they are a "natural" feature in many SM extensions \rightarrow "Renaissance" of LQ models (*to explain the anomalies, but not only...*):

- Scalar LQ as PNG Gripaios, '10 Gripaios, Nardecchia, Renner, '14 Marzocca '18
- Vector LQ as techni-fermion resonances

Barbieri *et al.* '15; Buttazzo *et al.* '16, Barbieri, Murphy, Senia, '17 + ...

• Scalar LQ from GUTs & R SUSY Hiller & Schmaltz, '14; Becirevic *et al.* '16, Fajfer *et al.* '15-'17; Dorsner *et al.* '17; Crivellin *et al.* '17; Altmannshofer *et al.* '17 Trifinopoulos '18, Becirevic *et al.* '18 + ...

• LQ as Kaluza-Klein excit.

Megias, Quiros, Salas '17 Megias, Panico, Pujolas, Quiros '17 Blanke, Crivellin, '18 + ... Vector LQ in GUT gauge models

> Assad *et al.* '17 Di Luzio *et al.* '17 Bordone et *al.* '17 Heeck & Teresi '18 + ...

Other low-energy observables

UV-insensitive observables (EFT predictions):

Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21

G. Isidori – New theorertical aspects of flavor physics

Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21 Fuentes-Martin, GI, Konig, Selimovic, '20

G. Isidori – New theorertical aspects of flavor physics

Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21 Fuentes-Martin, GI, Konig, Selimovic, '20